14 research outputs found

    Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals

    Get PDF
    Despite multiple sexual exposure to HIV-1 virus, some individuals remain HIV-1 seronegative (exposed seronegative, ESN). The mechanisms underlying this resistance remain still unclear, although a multifactorial pathogenesis can be hypothesised. Although several genetic factors have been related to HIV-1 resistance, the homozigosity for a mutation in CCR5 gene (the 32 bp deletion, i.e. CCR5-Delta32 allele) is presently considered the most relevant one. In the present study we analysed the genotype at CCR5 locus of 30 Italian ESN individuals (case group) who referred multiple unprotected heterosexual intercourse with HIV-1 seropositive partner(s), for at least two years. One hundred and twenty HIV-1 infected patients and 120 individuals representative of the general population were included as control groups. Twenty percent of ESN individuals had heterozygous CCR5-Delta 32 genotype, compared to 7.5% of HIV-1 seropositive and 10% of individuals from the general population, respectively. None of the analysed individuals had CCR5-Delta 32 homozygous genotype. Sequence analysis of the entire open reading frame of CCR5 was performed in all ESN subjects and no polymorphisms or mutations were identified. Moreover, we determined the distribution of C77G variant in CD45 gene, which has been previously related to HIV-1 infection susceptibility. The frequency of the C77G variant showed no significant difference between ESN subjects and the two control groups. In conclusion, our data show a significantly higher frequency of CCR5-Delta 32 heterozygous genotype (p = 0.04) among the Italian heterosexual ESN individuals compared to HIV-1 seropositive patients, suggesting a partial protective role of CCR5-Delta 32 heterozygosity in this cohort

    Biomarkers in Rare Disorders: The Experience with Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous mutations of the SMN1 gene. Based on clinical severity, three forms of SMA are recognized (type I–III). All patients have at least one (usually 2–4) copies of a highly homologous gene (SMN2) which produces insufficient levels of functional SMN protein, due to alternative splicing of exon7. Recently, evidence has been provided that SMN2 expression can be enhanced by different strategies. The availability of potential candidates to treat SMA has raised a number of issues, including the availability of data on the natural history of the disease, the reliability and sensitivity of outcome measures, the duration of the studies, and the number and clinical homogeneity of participating patients. Equally critical is the availability of reliable biomarkers. So far, different tools have been proposed as biomarkers in SMA, classifiable into two groups: instrumental (the Compound Motor Action Potential, the Motor Unit Number Estimation, and the Dual-energy X-ray absorptiometry) and molecular (SMN gene products dosage, either transcripts or protein). However, none of the biomarkers available so far can be considered the gold standard. Preclinical studies on SMA animal models and double-blind, placebo-controlled studies are crucial to evaluate the appropriateness of biomarkers, on the basis of correlations with clinical outcome

    Optimizing suicide prevention programs and their implementation in Europe (OSPI Europe): an evidence-based multi-level approach

    Get PDF
    Background Suicide and non-fatal suicidal behaviour are significant public health issues in Europe requiring effective preventive interventions. However, the evidence for effective preventive strategies is scarce. The protocol of a European research project to develop an optimized evidence based program for suicide prevention is presented. Method The groundwork for this research has been established by a regional community based intervention for suicide prevention that focuses on improving awareness and care for depression performed within the European Alliance Against Depression (EAAD). The EAAD intervention consists of (1) training sessions and practice support for primary care physicians,(2) public relations activities and mass media campaigns, (3) training sessions for community facilitators who serve as gatekeepers for depressed and suicidal persons in the community and treatment and (4) outreach and support for high risk and self-help groups (e.g. helplines). The intervention has been shown to be effective in reducing suicidal behaviour in an earlier study, the Nuremberg Alliance Against Depression. In the context of the current research project described in this paper (OSPI-Europe) the EAAD model is enhanced by other evidence based interventions and implemented simultaneously and in standardised way in four regions in Ireland, Portugal, Hungary and Germany. The enhanced intervention will be evaluated using a prospective controlled design with the primary outcomes being composite suicidal acts (fatal and non-fatal), and with intermediate outcomes being the effect of training programs, changes in public attitudes, guideline-consistent media reporting. In addition an analysis of the economic costs and consequences will be undertaken, while a process evaluation will monitor implementation of the interventions within the different regions with varying organisational and healthcare contexts. Discussion This multi-centre research seeks to overcome major challenges of field research in suicide prevention. It pools data from four European regions, considerably increasing the study sample, which will be close to one million. In addition, the study will gather important information concerning the potential to transfer this multilevel program to other health care systems. The results of this research will provide a basis for developing an evidence-based, efficient concept for suicide prevention for EU-member states

    SMN transcript levels in leukocytes of SMA patients determined by absolute real-time PCR

    No full text
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous mutations of the SMN1 gene. Three forms of SMA are recognized (type I–III) on the basis of clinical severity. All patients have at least one or more (usually 2–4) copies of a highly homologous gene (SMN2), which produces insufficient levels of functional SMN protein, because of alternative splicing of exon 7. Recently, evidence has been provided that SMN2 expression can be enhanced by pharmacological treatment. However, no reliable biomarkers are available to test the molecular efficacy of the treatments. At present, the only potential biomarker is the dosage of SMN products in peripheral blood. However, the demonstration that SMN full-length (SMN-fl) transcript levels are reduced in leukocytes of patients compared with controls remains elusive (except for type I). We have developed a novel assay based on absolute real-time PCR, which allows the quantification of SMN1-fl/SMN2-fl transcripts. For the first time, we have shown that SMN-fl levels are reduced in leukocytes of type II–III patients compared with controls. We also found that transcript levels are related to clinical severity as in type III patients SMN2-fl levels are significantly higher compared with type II and directly correlated with functional ability in type II patients and with age of onset in type III patients. Moreover, in haploidentical siblings with discordant phenotype, the less severely affected individuals showed significantly higher transcript levels. Our study shows that SMN2-fl dosage in leukocytes can be considered a reliable biomarker and can provide the rationale for SMN dosage in clinical trials
    corecore