6 research outputs found

    Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis

    Get PDF
    The salicinoids are anti-herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic. Recently, two enzymes from poplar, salicyl alcohol benzoyl transferase and benzyl alcohol benzoyl transferase, were shown to catalyze the production of salicyl benzoate, a predicted potential intermediate in salicinoid biosynthesis. Here, we used transcriptomics and co-expression analysis with these two genes to identify two UDP-glucose-dependent glycosyltransferases (UGT71L1 and UGT78M1) as candidate enzymes in this pathway. Both recombinant enzymes accepted only salicyl benzoate, salicylaldehyde and 2-hydroxycinnamic acid as glucose acceptors. Knocking out the UGT71L1 gene by CRISPR/Cas9 in poplar hairy root cultures led to the complete loss of salicortin, tremulacin and tremuloidin, and a partial reduction of salicin content. This demonstrated that UGT71L1 is required for synthesis of the major salicinoids, and suggested that an additional route can lead to salicin. CRISPR/Cas9 knockouts for UGT78M1 were not successful, and its in vivo role thus remains to be determined. Although it has a similar substrate preference and predicted structure as UGT71L1, it appears not to contribute to the synthesis of salicortin, tremulacin and tremuloidin, at least in roots. The demonstration of UGT71L1 as an enzyme of salicinoid biosynthesis will open up new avenues for the elucidation of this pathway

    Water-soluble chlorophyll protein (WSCP) of arabidopsis is expressed in the gynoecium and developing silique

    No full text
    Water-soluble chlorophyll protein (WSCP) has been found in many Brassicaceae, most often in leaves. In many cases, its expression is stress-induced, therefore, it is thought to be involved in some stress response. In this work, recombinant WSCP from Arabidopsis thaliana (AtWSCP) is found to form chlorophyll-protein complexes in vitro that share many properties with recombinant or native WSCP from Brassica oleracea, BoWSCP, including an unusual heat resistance up to 100A degrees C in aqueous solution. A polyclonal antibody raised against the recombinant apoprotein is used to identify plant tissues expressing AtWSCP. The only plant organs containing significant amounts of AtWSCP are the gynoecium in open flowers and the septum of developing siliques, specifically the transmission tract. In fully grown but still green siliques, the protein has almost disappeared. Possible implications for AtWSCP functions are discusse

    Red alder defense mechanisms against western tent caterpillar defoliation

    No full text
    Red alder (Alnus rubra Bong.) is a tree of high economic and ecological importance but subject to severe defoliation during episodic outbreaks of tent caterpillars (Malacosoma spp.). We evaluated variation in western tent caterpillar (M. californicum Packard, 1864) (WTC) resistance among and within red alder populations and clones, and investigated potential defense mechanisms. Bioassay feeding trials were conducted with WTC on 20 red alder clones from 10 provenances (two clones per provenance). Phenology and quality of red alder leaves were analyzed to determine if budburst, leaf chemical content, water content or physical traits are determinants of WTC preference. Alder clones differed in percent leaf area eaten by WTC and in leaf defense traits. The concentrations of total phenolics, condensed tannin and the diarylheptanoid oregonin negatively correlated with the percent leaf area eaten by the caterpillars, and a potential threshold was observed, above which the concentration of each of the chemicals appeared to reduce WTC feeding. Particularly, foliar concentrations of oregonin greater than 20 % of leaf dry weight were consistently associated with reduced feeding. The effects of oregonin concentration in red alder leaves on tent caterpillar feeding is a novel finding.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore