46 research outputs found

    Defining the Importance of Fatty Acid Metabolism in Maintaining Adipocyte Function: A Dissertation

    Get PDF
    Although once considered a simple energy storage depot, the adipose tissue is now known to be a powerful regulator of whole body insulin sensitivity and energy metabolism. This metabolically dynamic organ functions to safely store excess fatty acid as triglyceride, thereby preventing lipotoxicity in peripheral tissues and the development of insulin resistance. In addition, the adipose tissue acts as an endocrine organ and secretes factors, called adipokines, which influence whole body insulin sensitivity and glucose homeostasis. Therefore, understanding adipose tissue development and biology is essential to understanding whole body energy metabolism. A master regulator of adipose tissue development and whole body insulin sensitivity is the nuclear receptor, PPARγ. Due to the importance of this nuclear receptor in maintaining adipocyte function, disruptions in PPARγ activity result in severe metabolic abnormalities, such as insulin resistance and type 2 diabetes. Conversely, PPARγ activation by synthetic agonists ameliorates these conditions, demonstrating the potent control this nuclear receptor has on whole body metabolism. Therefore, understanding how PPARγ expression and activity are regulated, particularly in the adipose tissue, is paramount to understanding the pathogenesis of type 2 diabetes. While there are several synthetic PPARγ agonists available, identifying the endogenous ligand or ligands is still an area of intense investigation. Since fatty acids can induce PPARγ activation, in the first part of this thesis, I screened several fatty acid metabolizing enzymes present in the adipocyte to identify novel modulators of PPARγ activity. These studies revealed that the fatty acid Δ9 desaturase, Stearoyl CoA Desaturase 2 (SCD2), is absolutely required for 3T3-L1 adipogenesis and to maintain adipocyte-specific gene expression in fully differentiated cells. Although SCD2 does not appear to regulate PPARγ ligand production, it does potently regulate PPARγ activity by maintaining the synthesis of PPARγ protein. Surprisingly, this effect was found only with SCD2 and not with the highly homologous protein, SCD1. Therefore, these findings identify separate cellular functions for these SCD isoforms and reveal a novel and essential role for fatty acid desaturation in the adipocyte. Equally important to understanding PPARγ regulation is identifying the downstream mechanisms by which PPARγ activation improves insulin sensitivity. Evidence suggests that the PPARγ target gene, Cidea, is involved in mediating insulin sensitivity by binding to lipid droplets and promoting lipid storage in the adipocyte. Therefore, the second part of thesis provides mechanistic detail into Cidea function by showing that the carboxy terminal 104 amino acids is necessary and sufficient for lipid droplet targeting and the stimulation of triglyceride storage. However, these studies also identified a novel function for Cidea, which requires both the carboxy and amino termini: to induce larger and fewer droplets from smaller dispersed droplets, indicating the possible fusion of droplets. Perhaps this striking change in lipid droplet morphology allows tighter packing and more efficient storage of triglyceride and identifies a novel role for Cidea in lipid metabolism. The results presented in this thesis elucidate key aspects of lipid metabolism that maintain adipocyte function: SCD2 is required to maintain PPARγ protein expression in the mouse; Cidea is a downstream effector of PPARγ activity by promoting efficient triglyceride storage. Therefore, these findings enhance our understanding of adipocyte biology

    Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells

    Get PDF
    Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells

    Using the EngagedMD Multimedia Platform to Improve Informed Consent for Ovulation Induction, Intrauterine Insemination, and In Vitro Fertilization

    Get PDF
    Objective: To study patient and provider feedback on how a multimedia platform (EngagedMD) helps patients to understand the risks and consequences of in vitro fertilization (IVF), ovulation induction (OI), and intrauterine insemination (IUI) treatments and the impact of the informed consent process. Design: Prospective survey study. Setting: IVF units in the United States. Patient(s): Six-thousand three-hundred and thirty-three patients who viewed the multimedia platform before IVF or OI-IUI treatment at 13 U.S. IVF centers and 128 providers. Intervention(s): Quantitative survey with 17 questions. Main Outcome Measure(s): Assessment of the impact of a multimedia platform on patient anxiety, comprehension, and satisfaction and provider/nurse feedback related to the informed consent process. Result(s): The survey was completed by 3,097 respondents (66% IVF treatment; 34% OI-IUI treatment) and 44 providers. Overall, 93% felt the media platform was intuitive, and 90% and 95% felt it had appropriate duration and detail, respectively. Most agreed/strongly agreed it better prepared them to consent (88%), increased their comfort in pursuing treatment (77%) and increased their satisfaction with their care (83%). Compared with the OI-IUI group, statistically significantly more participants who viewed the IVF media platform strongly agreed that the comprehension questions reinforced key concepts (47% vs. 40%), educated them about treatment risks (55% vs. 44%), helped them ask providers informed questions (45% vs. 36%), and better prepared them to sign consent forms (46% vs. 37%). Overall, 63% of providers felt that the media platform improved patient learning, made patients more accountable, and standardized information dissemination. Conclusion(s): The EngagedMD media platform improves patient knowledge, satisfaction, and control over medical decision making and better prepares patients to give informed consent. Furthermore, it is well-liked by providers and is easily implemented

    Spin Excitations in BaFe1.84Co0.16As2 Superconductor Observed by Inelastic Neutron Scattering

    Full text link
    Superconductivity appears to compete against the spin-density-wave in Fe pnictides. However, optimally cobalt doped samples show a quasi-two-dimensional spin excitation centered at the (0.5, 0.5, L) wavevector, "the spin resonance peak", that is strongly tied to the onset of superconductivity. By inelastic neutron scattering on single crystals we show the similarities and differences of the spin excitations in BaFe1.84Co0.16As2, with respect to the spin excitations in the high-temperature superconducting cuprates. As in the cuprates the resonance occurs as an enhancement to a part of the spin excitation spectrum which extends to higher energy transfer and higher temperature. However, unlike in the cuprates, the resonance peak in this compound is asymmetric in energy.Comment: 12 pages, 6 figures; PACS # 74.70.-b, 74.20.Mn, 78.70.Nx, 74.25.Ha; corrected discussion of figures in tex

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins

    Get PDF
    In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway

    COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data

    Get PDF
    Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package
    corecore