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Abstract 
 

Although once considered a simple energy storage depot, the adipose tissue is now 

known to be a powerful regulator of whole body insulin sensitivity and energy metabolism. 

This metabolically dynamic organ functions to safely store excess fatty acid as triglyceride, 

thereby preventing lipotoxicity in peripheral tissues and the development of insulin 

resistance.  In addition, the adipose tissue acts as an endocrine organ and secretes factors, 

called adipokines, which influence whole body insulin sensitivity and glucose homeostasis. 

Therefore, understanding adipose tissue development and biology is essential to 

understanding whole body energy metabolism. 

A master regulator of adipose tissue development and whole body insulin sensitivity 

is the nuclear receptor, PPARγ.  Due to the importance of this nuclear receptor in maintaining 

adipocyte function, disruptions in PPARγ activity result in severe metabolic abnormalities, 

such as insulin resistance and type 2 diabetes. Conversely, PPARγ activation by synthetic 

agonists ameliorates these conditions, demonstrating the potent control this nuclear receptor 

has on whole body metabolism. Therefore, understanding how PPARγ expression and 

activity are regulated, particularly in the adipose tissue, is paramount to understanding the 

pathogenesis of type 2 diabetes. 

 While there are several synthetic PPARγ agonists available, identifying the 

endogenous ligand or ligands is still an area of intense investigation. Since fatty acids can 

induce PPARγ activation, in the first part of this thesis, I screened several fatty acid 

metabolizing enzymes present in the adipocyte to identify novel modulators of PPARγ 

activity. These studies revealed that the fatty acid ∆9 desaturase, Stearoyl CoA Desaturase 2 

(SCD2), is absolutely required for 3T3-L1 adipogenesis and to maintain adipocyte-specific 
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gene expression in fully differentiated cells. Although SCD2 does not appear to regulate 

PPARγ ligand production, it does potently regulate PPARγ activity by maintaining the 

synthesis of PPARγ protein. Surprisingly, this effect was found only with SCD2 and not with 

the highly homologous protein, SCD1. Therefore, these findings identify separate cellular 

functions for these SCD isoforms and reveal a novel and essential role for fatty acid 

desaturation in the adipocyte.  

Equally important to understanding PPARγ regulation is identifying the downstream 

mechanisms by which PPARγ activation improves insulin sensitivity. Evidence suggests that 

the PPARγ target gene, Cidea, is involved in mediating insulin sensitivity by binding to lipid 

droplets and promoting lipid storage in the adipocyte. Therefore, the second part of thesis 

provides mechanistic detail into Cidea function by showing that the carboxy terminal 104 

amino acids is necessary and sufficient for lipid droplet targeting and the stimulation of 

triglyceride storage. However, these studies also identified a novel function for Cidea, which 

requires both the carboxy and amino termini: to induce larger and fewer droplets from 

smaller dispersed droplets, indicating the possible fusion of droplets. Perhaps this striking 

change in lipid droplet morphology allows tighter packing and more efficient storage of 

triglyceride and identifies a novel role for Cidea in lipid metabolism.  

The results presented in this thesis elucidate key aspects of lipid metabolism that 

maintain adipocyte function: SCD2 is required to maintain PPARγ protein expression in the 

mouse; Cidea is a downstream effector of PPARγ activity by promoting efficient triglyceride 

storage. Therefore, these findings enhance our understanding of adipocyte biology. 
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Chapter I: Introduction 
 

The World Health Organization estimates that at least 10% of adults are obese 

worldwide and the percentage is as high as 25% in some western countries (8). This is of 

serious concern because many metabolic complications can result from obesity, including 

dyslipidemia, hypertension, atherosclerosis, insulin resistance and type 2 diabetes, 

collectively called the metabolic syndrome (4,9). The most common metabolic disease is 

type 2 diabetes, and the incidence of this disease is expected to continue rising. Health 

care costs due to this disease exceed $130 billion per year in the United States alone due 

to the associated complications, such as blindness, end-stage renal disease, and 

nontraumatic loss of limb (10). Since type 2 diabetes is rapidly becoming a global 

pandemic, it is crucial to unravel the complex metabolic pathways that control insulin 

signaling and whole body energy metabolism in order to develop more effective 

treatments.  

Regulation of whole body energy metabolism must be flexible in order to adapt to 

the changing nutritional environment the body is exposed to on a daily basis. When in a 

fasting state, the pancreas releases the hormone, glucagon, which signals to the liver to 

increase glucose production through glycogenolysis and gluconeogenesis and ketone 

production through ketogenesis. The endogenous production of these molecules is 

required when not exogenously available, since the brain requires glucose or ketones as 

an energy source (7,11,12). Catecholamines are also produced in the adrenal glands, 

which stimulates lipolysis and free fatty acid release from the adipose tissue to supply the 

adipose tissue itself and peripheral tissues with lipids as an energy source.  
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However, when glucose levels rise due to food intake, the body must 

simultaneously increase glucose disposal, which occurs primarily in the muscle, and 

decrease gluconeogenesis in the liver in order to maintain a healthy serum glucose level 

between 4-7 mM (13). These changes in glucose metabolism initiate with an increase in 

insulin and a decrease in glucagon secretion from the pancreas. Insulin then signals to the 

liver to simultaneously inhibit gluconeogenesis and glycogenolysis and increase skeletal 

muscle glucose transport, glycolysis, and glycogen synthesis, thereby promoting glucose 

utilization and storage rather than glucose production. Insulin also increases glucose 

transport and utilization, decreases lipolysis, and increases lipogenesis in the adipose 

tissue, thereby promoting lipid storage rather than lipid utilization. Furthermore, insulin 

stimulates the release of cytokines from the adipose tissue called adipokines, such as 

adiponectin and leptin, which act to sensitize peripheral tissues to the action of insulin 

(see Figure 1.1). 

The brain also responds to the changing nutritional environment by responding to 

insulin and other peripheral signals, such as leptin, to decrease food intake and hepatic 

glucose production. Conversely, the brain senses a decrease in these signals during 

nutrient deprivation and signals for the body to increase food intake and decrease energy 

expenditure in order to maintain an ample supply of energy (14). This complex metabolic 

network allows the body to use exogenous fuel when it is available and produces 

endogenous fuel when needed to meet the body’s demand for energy. The body must 

therefore remain metabolically adaptable to the nutritional environment and loss in this 
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flexibility leads to metabolic disturbances, such as insulin resistance and type 2 diabetes 

mellitus.  

Insulin resistance occurs when insulin loses the ability to effectively increase 

glucose disposal in the adipose tissue and muscle, leading to elevated serum glucose 

levels, which is exacerbated by reduced hepatic insulin sensitivity and increased glucose 

production. To compensate for this insulin resistance, the pancreas increases insulin 

production to maintain glucose homeostasis. However, when the pancreas fails to 

produce enough insulin to compensate for the decreased insulin sensitivity, then diabetes 

mellitus develops (15). This metabolic disease has become an epidemic and is a main 

cause of morbidity and mortality worldwide (4,5,16,17). While there are therapies 

available to treat type 2 diabetes, they have dangerous side effects, such as edema and 

heart failure (2,17). Therefore, dissecting the pathways of insulin action and identifying 

the components that dictate insulin sensitivity is of utmost importance in developing 

novel, more effective therapies to combat this disease. 

Insulin signaling 

Regulation of glucose transport 

 Insulin increases glucose transport by increasing the expression of the glucose 

transporter, GLUT4, on the cell surface. In the basal state, GLUT4 continually cycles to 

the cell surface, but is mainly retained in a perinuclear storage site (13,18). Upon insulin 

stimulation, there is rapid exocytosis of GLUT4 from this intracellular storage site as well 

as inhibition of GLUT4 endocytosis, resulting in a dramatic increase in GLUT4 

expression on the plasma membrane (13,19-22). The translocation of GLUT4 vescicles to 
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the plasma membrane requires an intact microtubule and actin network, relying on 

kinesins and myo1C, respectively, (18,23-27). The docking and fusion of GLUT4 with 

the plasma membrane also appears to be regulated by insulin, possibly through the 

SNARE accessory proteins, Synip and Munc18 (20,28,29). Thus, insulin mediated 

GLUT4 translocation is regulated at several steps (See reference (30) for a more detailed 

review). 

The signaling cascade to induce GLUT4 translocation is still under intense 

investigation, but many key components of the cascade have been defined. When insulin 

binds the insulin receptor on the cell surface, this transmembrane tyrosine kinase receptor 

undergoes a conformational change inducing autophosphorylation and results in multiple 

phosphotyrosine residues (31,32). Several of these phosphotyrosine residues function to 

recruit scaffolding proteins, such as IRS 1-4, which then recruit effector proteins to 

facilitate the insulin signaling cascade (13,33-36). The tyrosine phosphorylated IRS 

proteins, particularly IRS1 and IRS2, serve as docking sites for other downstream 

effectors, such as the type 1A phosphatidylinositol 3-kinase (PI3K) (37). The regulatory 

subunit of PI3K, p85, binds to the phosphorylated IRS proteins, which then activates the 

catalytic subunit of PI3K, p110. Although PI3K can phosphorylate many 

phosphoinositides, type 1A has the most activity on PI (4,5) P2 and generates PI (3,4,5) 

P3, which recruits PDK1 (38-42). This serine/threonine kinase then phosphorylates and 

activates AKT2, which is also a serine/threonine kinase. AKT2 is required for GLUT4 

translocation, therefore identifying its substrates is an area of intense investigation (43-

45). Although AKT2is involved in several processes and has many substrates, one that 
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appears to negatively regulate GLUT4 translocation is AS160. This RAB-GAP protein 

controls the intracellular retention of GLUT4, preventing its expression on the plasma 

membrane in the basal state. Phosphorylation by AKT2 inactivates AS160 and allows 

GLUT4 translocation to the plasma membrane, leading to an increase in glucose transport 

(see Figure 1.2) (46,47). 

 In parallel to the PI3K signaling pathway, evidence suggests there is also a PI3K 

independent pathway involved in glucose transport, although the mechanistic details of 

this pathway are controversial and largely unsubstantiated (25,48).  

 While there are several glucose transporters present in each tissue, GLUT4 is 

specifically required to mediate the insulin response in glucose transport. This is  

evidenced by the rapid insulin resistance that occurs when GLUT4 is knocked out 

specifically in the adipose tissue or muscle of mice, despite the presence of other glucose 

transporters (15,49,50). Therefore, identifying the molecular mechanisms that dictate 

GLUT4 translocation to the plasma membrane is crucial in identifying the abnormalities 

that occur with type 2 diabetes. 

Regulation of glycogen synthesis 

 In the muscle and liver, glycogen synthesis is mediated by glycogen synthase 

(GS), which incorporates uridine 5`-diphosphoglucose derived from glucose-6-phosphate 

(G6P), into a preexisting glycogen chain (51). GS is negatively regulated by GSK or 

PKA, which phosphorylates and inhibits GS activity. Upon insulin stimulation, GSK and 

PKA are inhibited, while protein phosphatase 1 (PP1) is activated, leading to decreased  
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Figure 1.1. The regulation of metabolism by insulin. When glucose levels rise due to 
food intake, the pancreas secretes insulin, which then binds to the insulin receptor expressed 
in the liver, muscle, and adipose tissue. Binding to the insulin receptor stimulates the uptake 
of glucose, amino acids and fatty acids into cells and increases the expression or activity of 
enzymes involved in glycogen, protein, and lipid synthesis, while inhibiting the activity or 
expression of those that cause degradation. Additionally, insulin inhibits the production of 
glucose in the liver and release of fatty acids into circulation from the adipose tissue and 
also promotes anabolic pathways, such as cell growth and differentiation. Together, insulin 
lowers serum glucose, protein, and fatty acids levels and allows the effective utilization of 
nutrients to support whole body metabolic processes (5). 
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GS phosphorylation and hence activation (5,52).  Both the inhibition of GSK and the 

activation of PP1 are PI3K mediated (53). Although it is still unclear how PI3K regulates 

PP1 activity, PI3K inhibits GSK via activation of AKT2, which then phosphorylates and 

inhibits GSK (54,55). In the muscle, the majority of glucose is converted to glycogen and 

this pathway is compromised in diabetic patients. However, this defect appears to be due 

to a decrease in glucose transport rather than a decrease in glycogen synthesis (See 

Figure 1.2) (51).  

Regulation of gluconeogenesis 

 Gluconeogenesis is a process unique to the liver and generates glucose from 

lactate, glycerol, and amino acids. This hepatic function is necessary to maintain serum 

glucose levels during a long term fast. However, upon feeding, insulin signals to inhibit 

gluconeogenesis in order to prevent an elevation of serum glucose levels and 

glucotoxicity. This insulin mediated signaling event requires the activation of the 

PI3K/AKT2 pathway via IRS1 and IRS2. AKT2 then phosphorylates and inhibits FoxO1 

and PGC1α which are required to promote the transcription of PEPCK, the rate limiting 

enzymes in gluconeogenesis, and G6Pase (56-59). The expression of PGC1α itself also 

requires FoxO1 and therefore the decrease in FoxO1 activity potently inhibits 

gluconeogenic gene expression (59). Another transcription factor that is inhibited by 

insulin is CBP, a coactivator of CREB, which also promotes gluconeogenic gene 

expression (60). Therefore, the regulation of gluconeogenesis by insulin is through a 

transcriptional inhibition of gluconeogenic genes and is not a rapid process (59). 

Nevertheless, the maintenance of this signaling cascade is crucial to maintaining proper  
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Figure 1.2 Schematic showing the general insulin signal transduction 

pathway. Insulin stimulation results in the tyrosine phosphorylation of the 
insulin receptor, which allows the docking of IRS proteins. This allows the 
association and activation of PI3K, which produces PI(3,4,5)P3, resulting in 
the recruitment and activation of PDK1, which then phosphorylates and 
activates both aPKCs and PKB, leading to GLUT4 translocation to the 
plasma membrane in the muscle and adipose tissue, decreased 
gluconeogenesis in the liver, and increased glycogen synthesis in the muscle 
and liver. In parallel, SHC binding to the insulin receptor recruits GRB2, 
which binds SOS. Together with SHP2 (not shown), SOS leads to activation 
of Ras and the MAPK cascade, leading to changes in gene expression and 
increased cell growth and differentiation (3). 
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glucose levels in the fed state and disruption of this process contributes significantly to 

the pathogenesis of obesity and type 2 diabetes (See Figure 1.2). 

Regulation of lipid metabolism 

 While most tissues can store fatty acids in the form of triglyceride, this is a 

primary function of the adipocyte, which is capable of storing large quantities of lipid 

without suffering cellular toxicity. The muscle and liver can also store triglyceride, but 

the storage capacity is limited. When lipid levels rise in these tissues, insulin and other 

signaling events are disrupted and cellular toxicity ensues (2,4,6). It is therefore 

important that the adipocyte, in particular, maintains its ability to store or release fatty 

acids appropriately to prevent this lipotoxicity in peripheral tissues (See Figure 1.3). 

During times of fasting, the adipocyte releases free fatty acids into circulation for 

peripheral energy production, which occurs through lipolysis, or the lipase mediated 

hydrolysis of fatty acids from the glycerol backbone of triglyceride. However, in the fed 

state, fatty acids will not only disrupt insulin signaling, but may also compete with 

glucose as an energy source, thereby reducing glycolysis and glucose transport (61). In 

order to reduce fatty acid availability, insulin promotes the storage of fatty acids in 

adipocytes by preventing lipolysis, promoting fatty acid esterification and triglyceride 

synthesis, and inhibiting fatty acid transport into the mitochondria for α-oxidation.  

Triglyceride is stored in cytoplasmic lipid droplets, which are structurally similar 

to lipoproteins. They contain a tightly packed neutral lipid core, consisting mostly of 

triglyceride and cholesterol esters, and are surrounded by a phospholipid monolayer and 

associated proteins (62). The prevailing theory for lipid droplet formation is that neutral  
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Figure 1.3. Schematic showing the importance of the adipose tissue in 

maintaining whole body insulin sensitivity. The middle diagram represents 
the insulin sensitive condition, while the left and right diagrams represent 
insulin resistant conditions resulting from lipoatrophy or obesity, 
respectively. During the lipoatrophic state, the loss in adipose tissue forces 
the accumulation of lipids in the liver and muscle, producing lipotoxicity in 
these tissues. In the obese state, the hypertrophic adipose tissue loses the 
ability to store free fatty acid as triglyceride, again resulting in lipotoxicity in 
the liver and muscle (2). 

Lipodystrophy Healthy Obesity 
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lipid accumulates between the lipid bilayer of the endoplasmic reticulum and eventually 

buds off from the ER into the cytoplasm, forming a lipid droplet (63,64). However, it is 

still not clear whether the lipid droplet remains associated with the ER or buds off 

completely (63-65). In adipocytes, there have been many proteins found associated with 

lipid droplets, but their role in lipid droplet biology is still unclear (66-69) Other proteins 

have a clear role in regulating triglyceride storage and turnover, such as members of the 

PAT family (Perilipin, Adiponectin, Tip47, S3-12 and OXPAT) and CIDE family (Cidea 

and Cidec, also called FSP27 in the mouse) (70-74).  The PAT family of proteins 

contains strong sequence homology in their amino terminal regions, but interestingly, 

thisregion is not required for targeting the proteins to lipid droplets (70,75-77). The Cide 

proteins were first discovered to have homology in their amino terminal regions to the 

DNA fragmentation factor, DFF45, and were believed to be involved in apoptosis (78). 

However, more recent findings demonstrate these proteins are potent regulators of lipid 

storage in adipocytes (71-73,79,80).   

 Perilipin appears to be unique among the lipid droplet proteins, because it not 

only prevents lipolysis by shielding and protecting the triglyceride from lipases in a basal 

state, but also promotes lipolysis in response to lipolytic stimuli, such as β-adrenergic 

receptor agonists (81-86). OXPAT may also facilitate both lipid storage and lipolysis, but 

how this occurs is not yet understood (74). The two main lipases responsible for lipolysis 

in the white adipose tissue are ATGL and HSL (87-89). In rodents, ATGL primarily 

appears to regulate basal lipolysis, whereas both enzymes participate in stimulated 
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lipolysis; in humans, evidence suggests that both enzymes regulate basal lipolysis, but 

HSL seems to regulate stimulated lipolysis (89,90). During fasting, β-adrenergic 

signaling causes a rise in cAMP levels, which then activates PKA. PKA phosphorylates 

and activates HSL and also phosphorylates perilipin, allowing HSL association with 

perilipin and the lipid droplet, and subsequent hydrolysis of triglyceride (81,91,92). In 

response to insulin, AKT2 phosphorylates and activates the cyclic nucleotide 

phosphodiesterase, PDE3B, which then hydrolyzes cAMP, decreasing cAMP levels and 

PKA activation, and leading to decreased HSL activity and lipolysis (5,93). 

Insulin also promotes lipid storage by simultaneously promoting endogenous fatty 

acid synthesis and inhibiting fatty acid oxidation in the mitochondria (5). This is 

accomplished by the activation of ACC1 and ACC2, producing the malonyl CoA used for 

either fatty acid synthesis or the inhibition of fatty acid oxidation, respectively (94). 

Malonyl CoA produced by ACC1, along with acetyl CoA, is utilized by FAS to produce 

palmitate, a sixteen carbon saturated fatty acid. Palmitate can then be esterified to 

glycerol to store the excess energy derived from glucose. Malonyl CoA derived from 

ACC2 binds to CPT1 and inhibits fatty acid transport into the mitochondria and thereby 

blocks fatty acid oxidation. Insulin also increases fatty acid and triglyceride synthesis via 

transcriptional mechanisms, by inducing SREBP-1c activity. This transcription factor 

increases the expression of enzymes involved in fatty acid and triglyceride synthesis, 

such as ACC, FAS, SCD1, and GPAT (95). These processes together increase the 

concentration of intracellular fatty acids, which can then be stored as triglyceride in lipid 
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droplets (96). This function of the adipocyte is crucial to prevent ectopic lipid 

accumulation and maintain whole body insulin sensitivity.  

Regulation of cell growth and differentiation 

In addition to regulating glucose and lipid metabolism, insulin is also a growth 

factor that promotes cell proliferation and/or differentiation (97,98). This occurs through 

increases in protein synthesis, decreases in protein degradation, and activation of various 

transcription factor complexes that control the transcriptional program for cell 

proliferation or differentiation (99-105). One such transcriptional complex is the AP-1 

complex, comprised of members of the Fos [c-Fos, Fra-1 ( fos-related antigen-1), Fra-2 

and FosB] and Jun (c-Jun, JunB and JunD) families and consists of either homo or 

hetero-dimers. Insulin induces activation of the AP-1 complex through activation of the 

MAPK cascade (99,105). Upon insulin stimulation, IRS proteins and/or Shc become 

phosphorylated, which then recruits the adaptor protein, Grb2, which in turn binds the 

exchange protein, SOS (5,13,105,106). In parallel, the tyrosine phosphatase, SHP2, binds 

insulin receptor substrates, such as Gab1 or IRS1/2, and SHP2 together with SOS activate 

the serine kinase, Ras (5,13). Once activated, Ras initiates a serine kinase 

phosphorylation cascade beginning with MEK, which in turn activates ERK. Activated 

ERK translocates to the nucleus and activates various transcription factors, such as Elk1, 

Sap1a, and Fra1, which then induce the transcriptional changes necessary for cell 

proliferation or differentiation (See Figure 1.2) (13,105). 

 The demanding processes of proliferation and differentiation require increased 

protein expression, which occurs through increases in protein synthesis and decreases in 



 14

protein degradation (100-103). Insulin induces these changes both transcriptionally via 

activation of the transcription factor, ATF4, and through PI3K mediated activation of a 

serine kinase, mTOR. The activation of ATF4 leads to increased expression of amino 

acid biosynthetic genes and transporters required to provide the amino acids necessary for 

protein synthesis (107).  The activation of mTOR stimulates ribosome biosynthesis by 

phosphorylating and activating p70 ribosomal S6 kinase (p70S6K) (107-110). 

Additionally, mTOR relieves the negative regulation of protein synthesis achieved by 

4EBP1, which binds and inhibits the eukaryotic translation initiation factor, eIF-4E. This 

then allows eIF-4E to bind to the 5`cap of mRNA and promote translation initiation 

(111).   

 Taken together, insulin regulates many complex signaling cascades that 

coordinate glucose and lipid metabolism as well as cell growth and differentiation. While 

inhibition of the MAPK branch of the insulin pathway will not acutely affect glucose 

metabolism, it will inhibit adipocyte differentiation (112-114). Therefore, understanding 

these complex networks is pertinent to understanding adipocyte biology and unraveling 

the roots of insulin resistance. 

Mechanisms of Insulin Resistance  

Since metabolism is extraordinarily complex and requires the integration of many 

pathways and coordination of several tissues, there are many different metabolic 

disturbances that may lead to insulin resistance. Genetic and acquired factors can both 

affect insulin sensitivity, including decreases in insulin receptor concentration and kinase 

activity, decreases in the concentration and phosphorylation of IRS proteins, PI3K 
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activity, GLUT4 translocation, the activity of intracellular enzymes, or the activity of 

transcription factors (5,13). 

Inhibition of insulin receptor signaling 

The activity of the insulin receptor can be altered by either genetic mutation or 

changes in its phosphorylation state. While mutations in the insulin receptor itself are 

rare, they have been reported. The severity of insulin resistance in these individuals 

depends on the ability of the receptor to form hybrids with IGF-1 or other receptors and 

the presence of other genetic or acquired defects (5). In regards to phosphorylation, if the 

insulin receptor and IRS proteins are serine rather than tyrosine phosphorylated, this can 

also down regulate insulin signaling. Serine phosphorylation can inhibit tyrosine 

phosphorylation and promote association with 14-3-3 proteins, leading to decreased 

insulin signaling (115,116). There have been several kinases implicated in this process, 

including JNK, PI3K, GSK-3, AKT, mTOR, PKC, and IκB kinase (13,117,118). SOCS 1 

and SOCS3 have also been shown to inhibit insulin signaling by binding IRS proteins and 

inducing their proteasomal degradation (119). Protein tyrosine phosphatases can also 

inhibit insulin action by dephosphorylating the insulin receptor and its substrates (120-

124). Protein tyrosine phosphatase 1B (PTB1B) appears to be one such phosphatase, 

since the PTB1B knockout mice are more insulin sensitive than their wild type 

counterparts and are resistant to diet induced obesity (125).  

Lipid mediators of insulin resistance 

 During insulin resistance and type 2 diabetes, there is often a chronic elevation of 

plasma free fatty acid and excessive lipid accumulation in non-adipose tissues (96,126). 
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Serum free fatty acid levels elevate during obesity due to the decreased ability of the 

adipose tissue to store lipids as well as decreased lipid clearance from the serum. This 

situation is further complicated in the insulin resistant state since insulin can no longer 

signal to inhibit lipolysis (127). While the adipose tissue is capable of storing excess free 

fatty acid as triglyceride, non-adipose tissues, such as the liver, muscle, and pancreas, 

have only a limited capacity for triglyceride storage. The resulting excessive lipid 

accumulation in the non-adipose tissues during obesity disrupts signaling pathways 

leading to metabolic perturbations. For example, lipid overload in the heart leads to 

apoptotic cell death and heart failure, in pancreatic cells causes dysregulated insulin 

secretion as well as apoptotic cell death, and in the liver and muscle decreases insulin 

sensitivity and glucose transport (96,128-131).  

 There have been several reasons proposed for the insulin resistance induced by 

free fatty acids in the liver and muscle. In 1963, Randle et al reported that elevated fatty 

acids increase fat oxidation and decrease glucose utilization due to a reduced flux of 

substrates through the glycolytic pathway. According to this mechanism, increased FFA 

levels lead to increased mitochondrial acetyl CoA/CoA ratios, which in turn inhibit 

pyruvate dehydrogenase activity and increase citrate levels, inhibiting 

phosphofructokinase activity. This process then leads to increased glucose-6-phosphate 

concentrations, which allosterically inhibits hexokinase, and thus reduces glucose 

transport/phosphorylation activity (132). However, in studies using 31P NMR, glucose-6-

phosphate concentrations are actually reduced rather than elevated in FFA-induced 

insulin resistant muscle. This phenomenon suggests there is a defect in glucose 
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transport/phosphorylation activity and not in glucose-6-phosphate inhibition of 

hexokinase as Randall suggested (51). 

 Free fatty acids have also been shown to activate PKCθ, IκKβ, as well as JNK1, 

leading to IRS1 serine phosphorylation, but exactly how the fatty acids lead to kinase 

activation is unclear. It may be through activation of the TLR4 pathway, increased 

reactive oxygen species generation, or endoplasmic reticulum stress (127). Conversely, 

lowering of FFA with the antilipolytic drug, Acipimox, enhances insulin sensitivity, 

supporting the idea that FFAs mediate insulin resistance (117). 

In order to undergo intracellular metabolism, free fatty acids must first be 

activated by acyl CoA synthetase, which adds a thioester CoA to the fatty acid. The acyl 

CoA may then be channeled into one of three competing pathways: oxidation, 

glycerolipid formation, or sphingolipid formation. The majority of lipids are incorporated 

into glycerolipids, including phospholipids and di- and triacylglycerols. DAG 

(diacylglycerol) has been proposed to be a lipid intermediate of insulin resistance by 

inducing serine phosphorylation of IRS1 via PKCθ or IκKβ (126,131).  

Sphingolipids, such as ceramide and the ganglioside GM3, are also potential lipid 

mediators of insulin resistance (133). In cultured muscle, adipocytes, and hepatocytes, 

ceramide analogs lead to decreased AKT2 activity by two mechanisms: activation of 

PP2A, which dephosphorylates and deactivates AKT2, and activation of PKCζ, which 

phosphorylates AKT on an inhibitory residue and prevents its translocation to the plasma 

membrane (133,134). The ganglioside GM3 has been shown to inhibit tyrosine 

phosphorylation of the insulin receptor and IRS1 and causes displacement of the insulin 
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receptor from detergent-resistant raft domains, leading to decreased insulin signaling and 

glucose uptake (135,136).  

 Some studies also suggest that cholesterol may participate in insulin resistance, 

since inhibitors of cholesterol synthesis have been shown to improve insulin sensitivity in 

rodents and humans (137,138). This may be due to decreased VLDL synthesis and 

delivery of triglycerides to peripheral tissues or to changes on the cellular level, since 

cholesterol reduction in cultured cells results in increased basal and insulin stimulated 

GLUT4 translocation (133). However, there is data suggesting that cholesterol depletion 

inhibits insulin signaling in cultured cells, possibly due to the disruption of lipid raft 

formation (139). Therefore, perhaps too little or too much cholesterol has a detrimental 

effect on insulin signaling resulting in a bell curve effect between cholesterol and insulin 

sensitivity. 

Adipokines 

 The adipose tissue has long been thought of primarily as a site of energy storage, 

however, it is now evident that the adipose tissue also serves as an endocrine organ by 

secreting various factors called adipokines. These adipokines signal to peripheral tissues, 

such as the brain, liver, muscle, and immune system, to regulate blood pressure, glucose 

and lipid metabolism, inflammation, and atherosclerosis (16). Certain adipokines, such as 

adiponectin, leptin, omentin, chemerin, and vaspin have positive effects on insulin 

sensitivity, while other adipokines, such as resistin, retinol binding protein 4, IL-6, and 

TNFα have negative effects on insulin sensitivity (4,16,140). During insulin resistance, 
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there is a decrease in the production of the insulin sensitizing factors and an increase in 

production of the insulin resistant factors (See Figure 1.4) (141). 

Adiponectin is one of the most powerful positive regulators of insulin sensitivity. 

This adipokine is secreted solely from adipocytes and causes suppression of hepatic 

gluconeogenesis, stimulation of fatty acid oxidation in the liver and skeletal muscle, 

stimulation of glucose uptake in the skeletal muscle, stimulation of insulin secretion from  

the pancreas, and modulation of food intake and energy expenditure (increased food 

intake and decreased energy expenditure during fasting and the opposite during 

refeeding) (140,141). It exerts its effects by binding to its receptors, AdipoR1 and 

AdipoR2, leading to the activation of AMPK, PPARα, and presumably other pathways 

that dictate the changes in metabolism (16). 

 Chemerin is another potential insulin sensitizing adipokine that is expressed in the 

liver and white adipose tissue and is required for normal adipocyte differentiation. It also 

enhances insulin stimulated glucose uptake and IRS1 tyrosine phosphorylation in 3T3-L1 

adipocytes and down regulates the inflammatory response in activated macrophages (16). 

The correlation of chemerin expression with obesity is conflicting: a decrease in 

expression was found in the adipose tissue of db/db mice compared to controls, but was 

higher in the adipose tissue of diabetic Psammomys obesus rats compared with control 

rats; In humans, normal and type 2 diabetics patients had similar levels of chemerin, but 

when normal glucose tolerant patients were further analyzed, chemerin levels were 

positively correlated with BMI, triglycerides, and blood pressure (142). Therefore, it is 
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unclear whether chemerin has a role in increasing insulin sensitivity in vivo and requires 

further studies. 

Omentin is a chemokine produced in the adipose tissue, but by visceral stromal 

vascular cells, not adipocytes. It has been shown to enhance insulin stimulated glucose 

transport and AKT phosphorylation in human subcutaneous and visceral adipocytes. The 

major isoform of omentin in the plasma is omentin 1 and its levels are negatively 

correlated with obesity and insulin resistance as determined by HOMA-IR and positively 

correlated with adiponectin and HDL levels (16). Although it is unclear what the 

mechanism of action is or the role omentin has in glucose metabolism, there is strong 

evidence that it may increase insulin sensitivity. 

Leptin is the best characterized adipocyte secretory protein that positively 

regulates insulin sensitivity and functions by controlling food intake, energy expenditure, 

and neuroendocrine function (140). The regulation of glucose homeostasis appears to be 

mediated through separate signaling pathways from food intake and body weight. A 

region of the hypothalamus, called the arcuate nucleus (ARC), has been shown to be the 

target of leptin in regulating glucose and insulin levels and requires PI3K and AKT2. 

However, the regulation of food intake is dependent on the JAK-STAT pathway: Mice 

with a mutant leptin receptor that cannot signal through the JAK-STAT pathway, but can 

still activate the PI3K pathway, become obese and hyperphagic with only mild glucose 

intolerance. Furthermore, this glucose intolerance can be corrected with calorie restriction 

(16). Therefore, the regulation of glucose homeostasis requires PI3K and AKT2, while 

the regulation of food intake and weight gain require the JAK-STAT pathway. 
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 Leptin also controls hepatic, muscle, and pancreatic function through  

direct actions on these tissues as well as through signals generated in the CNS. In liver 

and muscle, leptin activates AMPK, which inhibits triglyceride deposition in these 

tissues. In the pancreas, leptin was shown to inhibit insulin secretion in lean animals and 

protect the pancreas from lipid accumulation in response to a high calorie diet, thereby 

improving β-cell function (16,140). 

 Due to the potent effects of leptin on metabolism, mice deficient in leptin become 

severely obese and diabetic. However, during obesity, there appears to be leptin 

resistance not leptin deficiency. In obese individuals, a functional leptin receptor is 

expressed and serum leptin levels are higher than in lean individuals (143). Thus, during 

obesity chronic elevation of leptin may lead to leptin resistance, causing an increase in 

the food intake, lipid accumulation, and a decrease in insulin sensitivity. 

Vaspin is another adipokine thought to be an insulin-sensitizing factor. This 

adipokine is a serine protease inhibitor produced in the visceral adipose tissue (VAT) and 

was originally identified in Otsuka Long-Evans Tokushima fatty rats, a rat model of 

visceral obesity and type 2 diabetes. Vaspin was abundantly and exclusively expressed in 

the VAT at a time when body weight and hyperinsulinemia peaked. However, vaspin 

mRNA decreased with disease progression and then increased again with 

thiazolidinedione treatment, suggesting a positive role for this protein. Consistent with 

this idea, recombinant vaspin improved glucose tolerance and insulin sensitivity in high 

fat high sucrose chow induced obese ICR mice (144). Data surrounding vaspin function  
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Figure 1.4. Changes in adipose tissue, liver, and muscle with obesity, 

insulin resistance, and thiazolidinedione (TZD) treatment. The adipose 
tissue of lean subjects contains few macrophages, secretes relatively high 
levels of adiponectin and other insulin sensitizing adipokines, and secretes 

low levels of inflammatory cytokines. Also, β-oxidation of lipids in the 
muscle is high with little ectopic fat in the muscle and liver. During obesity 
and insulin resistance, the adipose tissue loses the ability to store fatty 
acids, causing their release into circulation. Additionally, the adipose tissue 
secretes less insulin sensitizing adipokines and more insulin resistant 
adipokines. There is also increased macrophage infiltration generating 
inflammation within the adipose tissue. The inflammatory state along with 
the loss in lipid storage promotes ectopic lipid accumulation in the liver 
and muscle, decreasing insulin sensitivity. However, treatment with TZDs 
normalizes adipokine secretion, reduces inflammation, and promotes the 
expression of lipid synthesis and storage enzymes in the adipose tissue. 
Together, these changes reduce ectopic lipid accumulation and restore 
adipocyte function and insulin sensitivity (4). 
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in humans is not as clear as in rodents. In humans, vaspin mRNA was found to be 

expressed in both visceral and subcutaneous adipose tissue. Serum concentrations of 

vaspin were correlated with obesity and impaired insulin sensitivity, but no correlation 

was found with type 2 diabetes. Additionally, in one study the serum vaspin 

concentration was lower in fit versus unfit individuals, however, physical training in 

untrained individuals caused an increase in vaspin serum concentration (145).  Therefore, 

it is still unclear what role vaspin has in human glucose metabolism, but it appears to be a 

positive regulator of insulin sensitivity in rodents. 

 There are also adipokines that negatively regulate insulin sensitivity. One such 

adipokine is resistin. In rodents, resistin is produced by adipocytes, while in humans it is 

produced by monocytes and macrophages, and was named for its ability to induce insulin 

resistance (140,146). Studies in rodents reveal that in several models of obesity, serum 

resistin levels rise, while the adipose tissue mRNA declines. Loss in resistin function 

leads to increased insulin sensitivity and hepatic AMPK phosphorylation as well as 

increased adipose tissue and body weight. Conversely, resistin treatment inhibits 

adipogenesis and systemic treatment or transgenic overexpression of resistin inhibits the 

ability of insulin to suppress hepatic glucose production, which may be explained by a 

decrease in AMPK phosphorylation and an increase in SOCS expression (147). The 

receptor for resistin is still unknown, but it may target the liver directly or the 

hypothalamus, since the effects on hepatic insulin sensitivity and glucose production can 

be repeated with resistin administration or blockade in the hypothalamus alone. In 

humans, the correlation of resistin with glucose abnormalities is still controversial. 
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However, resistin levels do positively correlate with TNFα and IL-6 levels and are 

likewise induced with low levels of LPS injection, suggesting resistin is related to 

inflammation and may therefore have a role in human glucose homeostasis (140). 

 Another adipokine that impairs insulin sensitivity is retinol binding protein 4 

(RBP4). Serum levels of this adipokine were found elevated in several mouse models of 

obesity and insulin resistance and also in humans with these conditions (148). Moreover, 

studies found that RBP4 mRNA expression is increased in visceral compared with 

subcutaneous adipose tissue, correlating with the idea that abnormalities in the visceral 

rather than subcutaneous adipose tissue are linked with insulin resistance (149). 

Additionally, serum RBP4 concentrations correlate with RBP4 mRNA expression, intra-

abdominal fat mass, total body fat mass, and insulin resistance (150). In addition, 

transgenic overexpression of human RBP4 in mice or treatment with recombinant RBP4 

induced insulin resistance by increasing hepatic PEPCK expression and gluconeogenesis 

as well as inhibiting muscle insulin signaling (16). On the contrary, genetic deletion of 

RBP4 in mice resulted in increased insulin sensitivity and the synthetic retinoid, 

fenretinide, which decreases serum levels of RBP4 by promoting urinary excretion, 

corrected the insulin resistance found in mice fed a high fat diet (148). Taken together, 

the studies indicate that RBP4 is a strong potential target for the treatment of insulin 

resistance and type 2 diabetes in humans. Nevertheless, studies also exist that fail to 

correlate RBP4 levels with obesity, insulin resistance, type 2 diabetes, or components of 

the metabolic syndrome. These discrepancies may be explained by differences in the 

patient populations or the methodology used to measure RBP4 levels. 
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IL-6 is a proinflammatory cytokine that is produced by many cell types, but 

production by the adipose tissue is enhanced during obesity. The secretion is higher from 

visceral than subcutaneous adipose tissue, consistent with the idea that visceral adipose 

tissue is more inflammatory than subcutaneous adipose tissue. However, the majority of 

the IL-6 produced during obesity is thought to come from the cells of the stromal 

vascular fraction (preadipocytes, endothelial cells, and macrophages) rather than the 

adipocytes themselves. Despite the correlation of IL-6 levels and obesity, there is 

conflicting data regarding the role of this cytokine in insulin resistance: It was found to 

decrease insulin mediated glycogen synthesis in the liver and glucose uptake in 

adipocytes, but increase both parameters in myotubes (16). Studies examining the effect 

of IL-6 on hepatic glucose production also produce conflicting results; therefore, much 

work is needed to clarify these discrepancies (4). One idea is that during obesity and type 

2 diabetes, IL-6 levels are chronically elevated, causing insulin resistance, whereas 

transient increases contribute to normal glucose homeostasis (16).  

TNFα is another proinflammatory cytokine that is implicated as a cause of insulin 

resistance. This cytokine is mainly produced by macrophages and lymphocytes, but can 

also be produced by adipocytes. Deletion of TNFα or the TNFα receptors significantly 

improved insulin sensitivity in diet induced obese mice and in leptin deficient ob/ob 

mice. Furthermore, neutralization of TNFα in obese rats improved insulin resistance, 

suggesting a strong role for TNFα in inducing insulin resistance in rodents (16). Both 

TNFα and IL-6 are thought to mediate insulin resistance through several distinct 

mechanisms, including JNK1 mediated serine phosphorylation of IRS-1, IκB kinase 
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mediated NFκB activation, and induction of SOCS3 expression (151-153). Additionally, 

TNFα increases the level of circulating free fatty acids by increasing lipolysis and 

decreasing triglyceride synthesis in the adipose tissue (117). TNFα also decreases PPARγ 

expession, a crucial adipocyte transcription factor required to maintain adipocyte 

function, leading to decreased insulin sensitivity in this tissue (154). In humans, adipose 

tissue TNFα expression has been shown to correlate with BMI, percent body fat, and 

serum insulin levels, whereas weight loss decreased TNFα levels. Other studies, 

however, failed to show an increase in TNFα in obese versus lean patients, challenging 

the idea that TNFα is important in the pathophysiology of insulin resistance in humans. 

Additionally, in contrast to rodents, infusion of TNFα neutralizing antibody did not 

improve insulin sensitivity in obese, insulin resistant or type 2 diabetic patients (16). 

Therefore, the role of this cytokine in human insulin resistance still needs clarification. 

Inflammation 

It appears that during obesity there exists a chronic low-grade inflammation with 

infiltration of macrophages in the white adipose tissue, which may lead to altered 

adipokine expression, insulin resistance, and diabetes (155). The mechanisms that initiate 

and drive this inflammation are poorly understood, but it seems to involve cross talk 

between the adipocytes and other cell types found within the white adipose tissue, such as 

macrophages and endothelial cells. Increased levels of inflammatory markers, such as 

TNFα and IL-6, characterize this inflammation, but whether the production of these 

molecules originates from adipocytes or macrophages is still under investigation 

(146,156,157). 
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 It is also unclear what recruits the macrophages to the adipose tissue during 

obesity. It appears to be related to body weight, since a small reduction in body weight is 

enough to decrease macrophage infiltration and inflammatory gene expression (146). One 

theory suggests that adipocytes undergo apoptosis, possibly due to reduced angiogenesis 

in the expanding adipose tissue and subsequent hypoxia, which then recruits 

macrophages to the adipose tissue (157-160). Another theory suggests that altered 

adipokine secretion recruits inflammatory monocytes/macrophages to the adipose tissue, 

possibly through the chemokine, MCP1 (monocyte chemoattractant protein 1) (146,161). 

However, its role in promoting macrophage infiltration is controversial, despite its 

increased expression during obesity (117,146). Additionally, leptin, which is primarily 

thought to be an insulin sensitizing factor by controlling food intake and energy 

expenditure, is also an immune modulator that is increased during obesity and could 

cause macrophage recruitment and activation (162). Furthermore, it has been proposed 

that other factors secreted from hypertrophied human adipocytes can activate endothelial 

cells present in the adipose tissue, causing the expression of adhesion molecules and 

promoting monocyte adhesion and migration into the tissue (146).  

Nevertheless, macrophage recruitment alone does not decrease insulin sensitivity; 

it’s the inflammatory response that is generated by the macrophages that negatively 

impacts adipocyte function and whole body insulin sensitivity. It is unclear what initiates 

the inflammatory process, but one possibility is through activation of the LPS receptor, 

TLR4 (163,164). During obesity, lipolysis increases in the adipocyte, releasing more fatty 

acids into circulation (89). The fatty acids may activate TLR4, which is expressed in 
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adipocytes, monocytes, and macrophages, leading to NFκB activation and the 

transcription of many proinflammatory genes in either cell type. The data regarding fatty 

acid activation of TLR4 is controversial, but TLR4 deficient mice have a decrease in the 

expression of inflammatory markers in response to lipid infusion and high fat diet and 

remain insulin sensitive compared to wild type mice (163,164). Additionally, isolated 

adipocytes from TLR4 deficient mice do not release TNFα or IL-6 in response to free 

fatty acid treatment (164). Clearly, these results support a role for TLR4 in inflammation 

and insulin sensitivity, but LPS contamination of the fatty acid treatments may be 

responsible for the activation of TLR4 rather than the fatty acids themselves.  

Role of PPARs in maintaining insulin sensitivity 

 Peroxisome proliferator-activated receptors (PPARs) are members of the steroid 

hormone nuclear receptor superfamily that regulate the transcription of genes involved in 

lipid metabolism, energy balance, inflammation, and atherosclerosis (165,166). The 

importance of these nuclear receptors is evidenced by the use of synthetic agonists that 

target PPARs and are effective therapies in treating dyslipidemia and diabetes (17). The 

three known isotypes of PPARs, PPARα, PPARγ, and PPARβ/δ, become activated 

through either ligand dependent or independent mechanisms. When a cognate ligand 

binds to the ligand binding domain (LBD), it induces a conformational change that 

facilitates complex formation with another ligand-activated receptor, retinoid X receptor 

(RXR). This change in conformation also induces the release of co-repressor proteins, 

like N-CoR and SMRT, and the binding of co-activator proteins, like SRC-1 and PGC-1, 

and subsequent expression of genes containing a PPRE response element in their 
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promoter region (167). Ligand binding can also repress gene expression by inducing 

protein-protein interactions with other transcription factors, such as NFκB, STAT, and 

AP-1, and inhibiting their activity (168-171). These interactions may explain the anti-

inflammatory effects of PPAR activation.  

Ligand independent activation has also been reported for PPARα and PPARγ via 

phosphorylation of the receptor, possibly involving MAP kinases (167,172). Other 

evidence of ligand independent activation comes from a mutant PPARγ receptor that does 

not bind several of the known ligands, but is still functional both during adipogenesis and 

in fully differentiated adipocytes (173). Additionally, blockade of the LBD with an 

antagonist does not inhibit transcriptional activity in fully differentiated adipocytes, 

suggesting a ligand is not necessary for activity (174).  

Although all three PPAR isoforms can regulate the same genes and contain 

common elements in their expression and regulation, each isoform has a distinct 

biological role in metabolism (see Figure 1.5). 

PPARα 

 Issemann and Green first identified PPARα in mouse liver in 1990, but has since 

also been found expressed in the heart, skeletal muscle, intestine, pancreas, vasculature, 

immune cells, and in many other tissues at low levels (165,175). This PPAR isoform is  

activated by long chain fatty acids, such as palmitate, stearate, linoleic acid, linolenic 

acid, eicosapentaenoic acid (EPA), and epoxyeicosatrienoic acids (EETs), as well as  

eicosanoids, such as hydroxyl-eicosatetraenoic acid (HETE), 9 and 13 hydroxydecanoic 

acids (9, 13-HODE), and leukotriene B4 (176-180). Given that these ligands are fatty 



 30

acids and immune modulators, it is not surprising that PPARα regulates the expression of 

genes involved in lipid metabolism, fatty acid oxidation, and inflammation (171,181-

184).  

 Much of the information regarding PPARα function has been elucidated by 

studies in PPARα deficient mice, which have impaired hepatic fatty acid uptake and 

oxidation, hypoglycemia, elevated levels of LTB4, and increased inflammation 

(165,176,181). These findings illustrate a central role for PPARα in regulating whole 

body metabolism; a decrease in fatty acid oxidation causes an over-compensatory shift 

towards glucose for energy, resulting in hypoglycemia. Additionally, in the absence of 

PPARα, the increased inflammatory state may be explained by an increase in NFκB 

activity and inflammatory gene expression, as well as increased levels of the 

proinflammatory lipid mediator, LTB4 (171,176). 

Activation of PPARα by synthetic agonists, called fibrates, also improves serum 

lipid levels by decreasing plasma triglyceride and VLDL concentrations. This occurs 

partly by enhanced hepatic fatty acid uptake and catabolism and increased HDL 

concentration (185,186). Consistent with the mouse knock out model, synthetic agonists 

also decrease the expression of inflammatory genes, such as IL-6, COX2, VCAM1, and 

tissue factor (TF) (165,182,184,186). These hypolipidemic and anti-inflammatory effects 

of PPARα activation may explain the beneficial effects of fibrates on atherosclerotic 

lesion progression found in clinical studies (186). However, there is also evidence 

suggesting PPARα is involved in hypertension and diabetic cardiomyopathy, indicating 

potential pathological consequences of PPARα activation (165,187). Perhaps the 
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metabolic outcome of its activation depends on the chemical structure of the ligand; 

different ligands may induce different conformational changes and result in the 

recruitment of distinct co-activator complexes (17). 

PPARγ 

The PPARγ gene gives rise to at least three mRNAs, PPARγ1, PPARγ2, and PPARγ3, 

that differ in their 5’ end due to alternate promoter usage and splicing. This results in 

identical proteins from PPARγ1 and PPARγ3, but an additional 30 amino acids on the 

amino terminal end of PPARγ2 (167). This latter PPARγ isoform is expressed primarily 

in the adipose tissue, whereas PPARγ1 is expressed in the adipose tissue, skeletal muscle, 

liver, heart, intestine, vaculature, and immune cells (165,188-190). Similar to PPARα, 

extensive data support PPARγ as an integral component of lipid metabolism, glucose 

homeostasis, inflammation, and atherosclerosis. The beneficial effects of the highly 

specific synthetic PPARγ agonists, thiazolidinediones, illustrate the important role of 

PPARγ in the metabolic syndrome. These agonists lower serum glucose, insulin, FFA, 

cholesterol, and triglyceride levels as well as reduce inflammation and atheroslerosis 

(6,17,191-194). The mechanism of action of thiazolidinediones is mainly through PPARγ 

activation in the adipose tissue, promoting lipid storage and metabolism in the adipose 

tissue and reducing lipid accumulation in peripheral tissues, as well as normalizing 

adipokine secretion (see Figure 1.4) (6,195,196). 
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Figure 1.5. Summary of the PPAR subfamily of nuclear receptors. A. Diagram 

showing the domain structure of PPARγ2, PPARγ1, PPARα, and PPARδ. With the 

exception of the N terminal 30 amino acids of PPARγ2, both PPARγ isoforms are 

identical. The percentage similarity of PPARγ with PPARα and PPARδ in the LBD 
and DBD are shown. B. Listed are the major sites of expression in the body, major 
biological roles, naturally occurring ligands, and classes of drugs that are in clinical 
use for each PPAR (6,7). 
 

PPARγγγγPPARαααα PPARδδδδ

PPARαααα

PPARδδδδ

PPARγγγγ1

PPARγγγγ2

A. 

B. 



 33

 

Due to the efficacy of synthetic PPARγ agonists in improving metabolic  

parameters, intense investigation has surrounded the identification of the endogenous 

ligands for PPARγ. There have been a number of proposed endogenous PPARγ ligands, 

including long chain polyunsaturated fatty acids, lysophosphatidic acid, nitrated oleic and 

linoleic acid, HODEs, and 15d-prostaglandin J2 (178,197-201). However, the 

physiological significance of these ligands remains unclear; while PPARγ activity can be 

induced by these ligands in vitro, it is not known if they are functional ligands in vivo. 

Taken together, evidence suggests that either PPARγ is a promiscuous receptor that can 

be activated by several different mechanisms, or there are one or more highly specific 

ligands that have not yet been identified.  

PPARγ has the highest expression in the adipose tissue, where it is the master 

regulator of adipogenesis and also of adipocyte gene expression in fully differentiated 

adipocytes (98,202,203). Consistent with this, mice deficient in PPARγ only in mature 

adipocytes had a significant reduction in brown and white adipose tissue mass. These 

mice were hyperlipidemic, with elevated serum FFA and triglyceride levels, and 

decreased serum levels of the adipokines, leptin and adiponectin. Clamp studies on these 

mice revealed adipose and hepatic insulin resistance along with hepatic lipid 

accumulation. Surprisingly, however, whole body insulin sensitivity was maintained on a 

chow diet. This effect was most likely due to the maintenance of muscle insulin 

sensitivity, which is responsible for the majority of glucose disposal. Nevertheless, these 

mice did become insulin resistant on a high fat diet (196).  
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Another mouse model of fat specific PPARγ deletion resulted in one-week-old 

animals that had no adipose tissue, severe hepatic steatosis, and lipid accumulation in the 

heart, skeletal muscle, and kidneys, as well as insulin resistance and glucose intolerance. 

When these mice reached adulthood, serum FFA and triglyceride levels decreased, 

presumably due to increased FFA oxidation in the muscle, but they were still glucose 

intolerant due to elevated hepatic gluconeogenic enzymes (196). Together, these studies 

highlight the importance of adipose PPARγ in maintaining whole body insulin sensitivity, 

particularly in the presence of high fat diets. This is due the crucial role of PPARγ in 

regulating adipose tissue development and protecting peripheral tissues from lipotoxicity 

as well as regulating the expression of insulin sensitizing adipokines. 

While the primary role of PPARγ is in the adipose tissue, this nuclear receptor is 

also responsible for maintaining whole body insulin sensitivity in other tissues. For 

example, deletion of PPARγ in the muscle and liver also resulted in whole body insulin 

resistance, despite its low expression in these tissues. In the muscle, PPARγ deficiency 

resulted in secondary insulin resistance in the adipose tissue and liver; in the liver, 

PPARγ deficiency resulted in decreased hepatic steatosis, but increased adiposity, 

hyperlipidemia, and insulin resistance (196,204,205). Additionally, PPARγ deletion in 

macrophages resulted in disruption of alternative macrophage activation and subsequent 

diet induced obesity, insulin resistance, and glucose intolerance (190). Therefore, PPARγ 

appears to regulate insulin sensitivity by various mechanisms in distinct tissues and may 

promote the appropriate cross talk between these tissues necessary for proper 

metabolism.  
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PPARβ/δ 

 Similar to PPARα and PPARγ, PPARδ (also known as PPARβ) is activated by 

long chain fatty acids, including polyunsaturated fatty acids and eicosanoids, and its 

target genes are likewise involved in lipid metabolism (165,177). PPARδ is ubiquitously 

expressed, suggesting a role in basic cellular functions, such as lipid synthesis and 

turnover, but it may also have a role in cell proliferation and differentiation (165,175). 

However, the expression of PPARδ is the highest in skeletal muscle, where it regulates 

genes involved in fatty acid metabolism, mitochondrial respiration, thermogenesis, and 

the programming of muscle fiber type (206,207) 

 Since there is still not a synthetic agonist used clinically in humans, most of the 

information regarding PPARδ function has been generated in rodent models. Mouse 

knockout studies support its function in fundamental cell processes, since mice die at an 

early age and have placental and myelination defects, altered wound healing and 

responses to skin inflammation, and decreased adipose tissue mass (175). However, 

adipocyte-specific PPARδ deletion does not reduce fat mass, suggesting PPARδ is not 

specifically required for fat storage in the adipose tissue (165).  Conversely, activation of 

PPARδ with a high affinity ligand, GW501516, has been shown to increase HDL levels, 

decrease inflammation, cause weight loss, and improve whole body insulin sensitivity in 

mice (175,207). The improved metabolic phenotype appeared to be mediated by 

increased lipid catabolism and oxidative phosphorylation in the adipose and muscle and 

decreased hepatic glucose output. The effects in the liver were attributed to increased 

glycolysis and flux through the pentose phosphate shunt and enhanced fatty acid 
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synthesis (207). Additionally, PPARδ may regulate some aspects of alternative 

macrophage activation, which has been shown to positively regulate whole body insulin 

sensitivity (175,190). Taken together, PPARδ appears to be a potent regulator of glucose 

homeostasis by controlling metabolic gene expression in the major insulin responsive 

tissues, but future studies need to elucidate the role of this receptor in humans.  

Specific Aims 

 Maintaining adipocyte function is critical to maintaining insulin sensitivity and 

glucose homeostasis due to the ability of adipocytes to safely store excess free fatty acid 

as triglyceride and secrete factors, called adipokines, which enhance insulin sensitivity in 

peripheral tissues. The development of adipose tissue occurs through adipogenesis, a 

process whereby preadipocyte precursors differentiate into mature adipocytes. When 

exposed to a high calorie diet, the adipose tissue will expand due to increased triglyceride 

storage within the adipocytes and increased cell number due to adipogenesis. Both of 

these processes are crucial to maintaining insulin sensitivity and glucose homeostasis 

when exposed to a high calorie diet. A critical regulator of both triglyceride storage and 

adipogenesis is the nuclear receptor, PPARγ. Not only is the activation of PPARγ 

necessary and sufficient to drive these processes, but also the depletion of PPARγ results 

in decreased adipocyte specific gene expression, lipid storage, and insulin sensitivity. 

Therefore, PPARγ is a master regulator of adipogenesis, adipocyte function, and whole 

body insulin sensitivity.  

Understanding the endogenous regulation of PPARγ has been an intense area of 

research since the discovery that this receptor mediates the therapeutic effects of 
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thiazolidinediones (TZDs) in glucose homeostasis. PPARγ activity can be regulated by its 

expression level and through ligand dependent and independent activation 

(167,168,173,178). Manipulating these endogenous regulatory mechanisms may provide 

the therapeutic benefits found with TZDs, while not inducing the same negative side 

effects, such as heart failure and edema (17). Therefore, identifying these endogenous 

regulatory mechanisms is critical to developing safer, more effective diabetic therapies. 

Equally important to understanding PPARγ regulation is identifying the 

downstream mechanisms by which PPARγ activation improves insulin sensitivity. 

Although increased lipid storage in the adipose tissue is thought to mediate the insulin 

sensitizing effects of PPARγ agonists, the mechanisms by which PPARγ target genes 

control this adipocyte function are still unclear (4). Defining these parameters will 

provide insight into understanding adipocyte biology and further elucidate how this tissue 

regulates whole body insulin sensitivity.  

Therefore, to enhance our understanding of PPARγ regulation and function, the 

specific aims of this study were: 

1. To identify novel mechanisms by which PPARγγγγ is regulated by fatty acid 

metabolism in adipocytes. siRNA mediated depletion of 24 enzymes in 

preadipocyte fibroblasts was performed to identify fatty acid metabolizing 

enzymes that are required for adipogenesis, a PPARγ dependent process. This 

siRNA-based screen identified Stearoyl CoA Desaturase 2 (SCD2) as a 

required factor for 3T3-L1 adipogenesis and was therefore further tested in 

fully differentiated adipocytes to determine if these effects were due to 
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specific regulation of PPARγ. These studies found that SCD2 is required for 

general protein synthesis and hence PPARγ protein expression and function in 

fully differentiated adipocytes and may explain the requirement for this fatty 

acid metabolizing protein during adipogenesis.  

2. To determine the mechanism by which a PPARγγγγ target gene, Cidea, 

functions to increase lipid storage in adipocytes. Immunofluorescent 

confocal microscopy was used to determine which domain of Cidea is 

responsible for its targeting to lipid droplets. Analysis of cells expressing 

either the full length or various domains of Cidea fused to HA or GFP 

determined that the carboxy terminus is necessary and sufficient for lipid 

droplet localization. Additionally, overexpression of Cidea leads to enhanced 

triglyceride storage in COS cells, which is also specifically dependent on the 

carboxy terminus. Furthermore, while the carboxy terminus is necessary for 

lipid droplet localization, the amino terminus is required to induce the 

formation of large and few lipid droplets from small, dispersed lipid droplets. 

Thus, the carboxy terminus is required to increase triglcyeride storage, but the 

amino terminus is required for this yet unrecognized function of Cidea to 

change the lipid droplet morphology. 
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Chapter II: Stearoyl CoA Desaturase 2 is required for PPARγ 

expression and adipogenesis in cultured 3T3-L1 cells 

 
Disclaimer: The author performed all experiments, except Sarah Nicoloro generated 
affymetrix gene chip data shown in Figure 2.1 (gene changes during 3T3-L1 
adipogenesis and in mice fed a normal versus high fat diet) and Juerg Straubhaar 
generated the affymetrix database from the gene chip data for analysis and the heat map 
shown in Figure 2.6. 

 

This chapter is in the published format: Christianson JL, Nicoloro S, Straubhaar J, 
Czech MP. Stearoyl CoA Desaturase 2 is required for PPARgamma expression and 

adipogenesis in cultured 3T3-L1 cells. J Biol Chem. 2007 Nov 21. 
 

Abstract 

Based on recent evidence that fatty acid synthase and endogenously produced fatty 

acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a 

siRNA-based screen to identify other fatty acid metabolizing enzymes that may mediate 

this effect. Of 24 enzymes screened, Stearoyl CoA Desaturase 2 (SCD2) was found to be 

uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the 

maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 

adipocytes, including the expression of SCD1. Despite the high sequence similarity 

between SCD2 and SCD1, silencing of SCD1 did not downregulate 3T3-L1 cell 

differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 

44 fold in adipose tissue upon feeding mice a high fat diet, while SCD1 showed little 

response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a 

decrease in PPARγ mRNA and protein, while in mature adipocytes loss of SCD2 

diminished PPARγ protein levels, with little change in mRNA levels. In the latter case, 

SCD2 depletion did not change the degradation rate of PPARγ protein, but decreased the 
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metabolic labeling of PPARγ protein using [35S] methionine/cysteine, indicating protein 

translation was decreased. This requirement of SCD2 for optimal protein synthesis in 

fully differentiated adipocytes was verified by polysome profile analysis, where a shift in 

the mRNA to monosomes was apparent in response to SCD2 silencing. These results 

reveal that SCD2 is required for the induction and maintenance of PPARγ protein levels 

and adipogenesis in 3T3-L1 cells. 

Introduction 

The ability of adipocytes to sense and respond to circulating fatty acid levels is 

important in maintaining the proper balance between fatty acid storage and fatty acid 

release for energy utilization. In the case of energy excess, fatty acids are stored in the 

form of triglyceride, and new adipocytes are generated to efficiently metabolize amino 

acids, glucose, and fatty acids to triglyceride (196).  The key regulator of adipogenesis, 

the process whereby preadipocytes differentiate into fully mature adipocytes, is the 

ligand-activated nuclear receptor, PPARγ (208). Cultured mouse 3T3-L1 preadipocytes 

are an excellent model system for the study of adipogenesis.  These cells differentiate 

into adipocytes with multilocular lipid droplets through a transcriptional cascade 

beginning with the rapid and transient expression of C/EBPβ and C/EBPδ (98,209). The 

upregulation of these transcription factors precedes the expression of PPARγ and 

C/EBPα, which are critical for the completion of adipogenesis as well as the maintenance 

of adipocyte-specific gene expression in fully differentiated cells (98,209). Other 

transcription factors have also been shown to play significant roles in adipogenesis and 

adipocyte biology (for reviews, see (98,210,211).  However, since PPARγ controls the 
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expression of large sets of genes required to maintain the adipocyte phenotype, including 

C/EBPα itself, a loss in the activity or expression of PPARγ leads to a loss in adipocyte 

function (203). 

While it is unclear whether ligands are actively modulating PPARγ activity in fully 

differentiated adipocytes, ligand-mediated activation of PPARγ appears to be required for 

transcriptional activity during adipogenesis (174). The requirement for a PPARγ ligand 

during differentiation is supported by the fact that preadipocytes will not differentiate in 

the presence of a PPARγ antagonist that blocks ligand binding.  In addition, it appears 

that differentiating adipocytes can fully synthesize a PPARγ ligand, since preadipocytes 

will differentiate and produce a PPARγ ligand in the absence of exogenous fatty acids 

(201,212). Although the ligand has not been identified, ligand production is dependent on 

sterol regulatory element binding protein-1 (SREBP1), since the expression of a 

dominant negative SREBP1 blocks adipogenesis and further addition of a PPARγ 

synthetic ligand restored differentiation. All together, this suggests that a PPARγ ligand is 

necessary for adipogenesis and that ligand production relies on SREBP1 activity. 

Furthermore, the overexpression of SREBP1 in adipocytes apparently increases ligand 

production (213), while inhibition of acetyl CoA carboxylase (ACC) (214) or fatty acid 

synthase (FAS) (215) inhibits adipogenesis. SREBP1 is a transcription factor that 

controls the expression of many fatty acid metabolizing enzymes, including ACC and 

FAS. Since ACC and FAS work sequentially to produce palmitate, it is possible that 

SREBP1 promotes PPARγ ligand production through a pathway involving ACC and 

FAS. While there may be several explanations for the requirement of SREBP1, ACC, or 
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FAS for adipogenesis apart from PPARγ ligand production, these studies do support the 

notion that endogenously synthesized fatty acids are required for adipogenesis. 

Since PPARγ has a large hydrophobic ligand binding domain (216) and activation 

occurs in response to fatty acids (217), endogenous long chain fatty acids or their 

derivatives have been proposed as natural ligands.  These include oleate, linoleate, 

nitrolinoleate (LNO2), nitro-oleate (OA-NO2), 9-hydroxydecaenoic acid (9-HODE), 

arachadonic acid, and 15-deoxy-prostaglandin J2 (198,200,201,218,219). Despite the 

many proposed ligands, LNO2 and OA-NO2 are the only fatty acids with a high binding 

affinity, but it has not yet been verified that these fatty acids are truly endogenous PPARγ 

ligands in adipocytes (200,219). Since several low affinity fatty acid ligands activate 

PPARγ (198-200,218,220), this nuclear receptor may instead serve as a general fatty acid 

sensor, allowing proper expression of fatty acid metabolizing enzymes and the generation 

of new adipocytes.   

Since adipocytes express multiple fatty acid metabolizing enzymes, these cells 

apparently produce highly diverse lipid species that may affect cellular signaling events, 

including PPARγ activation.  Thus, the aim of the present study was to identify enzymes 

involved in fatty acid synthesis or metabolism that may mediate such signaling pathways 

through their fatty acid products. To achieve this goal, we set up a screen in which 24 

fatty acid metabolizing enzymes were individually depleted using siRNA 

oligonucleotides in order to identify enzymes that are required for adipocyte-specific 

gene expression. Through this siRNA screen, we identified the fatty acid ∆9 desaturase, 

Stearoyl CoA Desaturase 2 (SCD2), as a required enzyme for 3T3-L1 cell adipogenesis 
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and for the maintenance of adipocyte-specific gene expression in fully differentiated 

cells.  Importantly, SCD2 was found to be required for PPARγ induction during 

differentiation of 3T3-L1 cells and for PPARγ expression in fully differentiated 

adipocytes.  Related to this latter effect, SCD2 expression was found to promote protein 

translation, secondarily affecting PPARγ protein levels. Surprisingly, although SCD1 and 

SCD2 exhibit high sequence similarity, are both expressed in the endoplasmic reticulum 

of the adipocyte, and are predicted to produce the same products, SCD1 depletion failed 

to attenuate PPARγ expression or adipogenesis. Therefore, these results identify SCD2 as 

a key regulator of adipocyte function by promoting PPARγ protein synthesis, and reveal a 

novel and specific role for SCD2 versus SCD1 in the adipocyte.  

Experimental Procedures 

Animals- All procedures were carried out following the University of Massachusetts 

Medical School Institution Animal Care and Use Committee (UMMA-IACUC) 

guidelines.  Four-week-old male C57BL/6J mice were purchased from Jackson 

Laboratory (Bar Harbor, ME) and mantained in a 12hr light/dark cycle.  Half of the mice 

were fed a standard mouse chow (10%kcal fat) and the other half was fed a high fat diet 

(55%kcal fat) ad libitum for eighteen weeks.  The animals were fasted for 18 hours prior 

to harvesting the tissues.  Animals were sacrificed and epididymal fat pads were 

harvested from the mice and placed in KRH buffer pH 7.4 supplemented with 2.5% BSA 

and RNA was collected using TRIzol (Invitrogen) for subsequent Affymetrix GeneChip 

analysis. 
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Materials- Rosiglitazone was purchased from Biomol (Plymouth Meeting, PA). The 

proteasome inhibitor, MG132, was purchased from Calbiochem Biotechnology (San 

Diego, CA). Mouse monoclonal anti-PPARγ, mouse monoclonal anti-AKT1, mouse 

monoclonal anti-β catenin, rabbit polyclonal anti-PPARγ, and rabbit polyclonal anti-

C/EBPα antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Rabbit anti-AMPK, eEF2, RS6K, and eIF2α were purchased from Cell Signaling 

(Danvers, MA). Protein A-Sepharose beads were purchased from Sigma. Rabbit PTEN 

antiserum was purchased from Upstate Biotechnology (Charlottesville, VA). The MTS 

cell proliferation assay kit and TUNEL kit were purchased from Promega (Madison, WI). 

The iScript cDNA synthesis kit and the iQ SYBR green supermix kit were purchased 

from Bio-Rad (Hercules, CA). [35S] methionine/cysteine was purchased from Perkin 

Elmer (Waltham, MA). 

SiRNA Duplexes- The siRNA purchased from Dharmacon Inc.(Lafayette, CO) were 

designed to target the following cDNA sequences: scrambled, 5’-CAGTCGCGTTTGCG 

ACTGG-3’; SCD2, 5’-GAGCAGATGTTCGCCCTGATT-3’; PPARγ, 5’-GACATGAA 

TTCCTTAATGA-3’; SCD1,5’GCCTAGAACTGATAACT AATT -3’; and proprietary 

SMART-pool siRNA duplexes were used to target all other transcripts. 

Cell culture and electroporation-3T3-L1 fibroblasts were cultured in Dulbecco’s 

modified Eagle’s medium DMEM supplemented with 10% fetal bovine serum, 50 µg/mL 

streptomycin, and 50 units/mL penicillin (45). For experiments performed during 

differentiation, fibroblasts were cultured for 7 days and 5x106 cells were electroporated 

with 20 nmol siRNA. The electroporation was performed using a Bio-Rad gene pulser II 
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at the setting of 0.18 kV and 960 microfarads. Immediately after electroporation, the cells 

were reseeded into 2 wells of a 6 well plate. After 24 hours, differentiation media 

consisting of 2.5 µg/mL insulin, 0.25 µM dexamethasone, and 0.5 mM IBMX (3-

Isobutyl-1-methyl-xanthine) in the culture media described above was added for 72 hours 

in the absence or presence of 1µM rosiglitazone. After 72 hours, differentiation media 

was replaced with culture media for an additional 24 hours, and then RNA or protein was 

collected. For experiments in mature adipocytes, fibroblasts were cultured for 8 days, 

differentiated into mature adipocytes as described above, and cultured for an additional 7 

days. Adipocytes were then electroporated (20 nmol siRNA/ 5x106 cells) as described 

above. After electroporation, cells were reseeded into multiple-well plates and RNA or 

protein was collected 4-72 hours post-electroporation. 

Affymetrix Gene Chip Analysis- Total RNA was collected from day 10 adipocytes 

after 72 hours of siRNA treatment or from preadipocyte fibroblasts, adipocytes, and 

primary fat tissue as described (221). Subsequent reactions were carried out as already 

described (222).Only signals considered present were used for further analysis. If more 

than one probe is present, only one representative probe is shown.  

RNA isolation and Real Time-PCR- Total RNA was collected using TRIzol 

(Invitrogen, Carlsbad, CA) and reverse transcription and real time-PCR analysis were 

carried out as already described (1,222). Primers were chosen from the PrimerBank 

online database (http://pga.mgh.harvard.edu/primerbank) (223). AKT1 was used as the 

internal control.  
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Immunoblotting- Cells were solubilized with lysis buffer containing 25 mM Hepes 

(pH 7.5), 0.5% Nonidet P-40, 1mM EGTA, 1 mM EDTA, 1% SDS, 12.5 mM NaF, 5mM 

sodium pyrophosphate, 5 mM β-glycerophosphate, 5 mM sodium vanadate, 1mM PMSF, 

5 µg/mL aprotinin, and 10 µg/mL leupeptin.  Protein was quantified using the BCA 

protein assay kit (Pierce, Rockford, IL) and then resolved on a 8% SDS-PAGE gel, 

electrotransferred to nitrocellulose, blocked with 5% BSA and 5% nonfat milk in TBST 

(0.05% Tween 20 in Tris-buffered Saline), washed with TBST, and incubated with 

specific antibody at 4°C, overnight. The blots were then washed with TBST and a 

horseradish peroxidase anti-mouse or anti-rabbit secondary antibody was applied. 

Proteins were visualized using an enhanced chemiluminescent substrate kit (Amersham 

Pharmacia Biotech, Piscataway, NJ) and immunoblot band intensities were quantified by 

scanning densitometry using Photoshop. 

Oil Red O staining- Cells were fixed with 4% formaldehyde for 1 hour at room 

temperature, washed three times with PBS, permealized with P-buffer (0.5% Triton X-

100, 1% fetal bovine serum, and 0.05% sodium azide) for 20 minutes, incubated with Oil 

Red O solution (5 mg/mL Oil Red O solid dissolved in isopropanol, then diluted to a 60% 

working solution with ddH20) for 30 minutes, washed three times with distilled water, 

and analyzed by light microscopy or visual inspection. 

35
S-Methionine/cysteine labeling and immunopreciptiation of PPARγ- Seventy two 

hours after electroporation of cells with siRNA, one 100 mm plate of cells was starved of 

methionine and cysteine for 2 hours and then labeled with 500 uCi of [35S] 

methionine/cysteine for 4 hours. Cells were then lysed in ice-cold buffer containing 25 
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mM Hepes (pH 7.5), 0.5% Nonidet P-40, 1mM EGTA, 1 mM EDTA, 1% SDS, 12.5 mM 

NaF, 5mM sodium pyrophosphate, 5 mM β-glycerophosphate, 5 mM sodium vanadate, 

1mM PMSF, 5 µg/mL aprotinin, and 10 µg/mL leupeptin. Total cell lysates of 1 mg of 

protein were immunoprecipitated overnight with 20 µg of mouse monoclonal antibody 

against PPARγ followed by incubation with 50 µl of protein A-sepharose beads for 2 h at 

4°C. The beads were then washed 5 times with lysis buffer before boiling for 5 minutes 

in Laemmli buffer.  Protein was then separated on an 8% SDS gel, transferred to 

nitrocellulose, and exposed to a phosphor screen for 60 hours.  The screen was then 

visualized with a Phosphorimager (Molecular Dynamics). The nitrocellulose was then 

immunoblotted as described above using goat polyclonal antibody against PPARγ to 

detect the efficiency of the immunoprecipitation. 

Polysome profile and RT-PCR- Polysome profiles were generated as described 

previously (224-226). Briefly, after siRNA transfection, cells were reseeded into one 10-

cm dish. After 24 or 72 hours, cycloheximide (Sigma) was added at a final concentration 

of 100 mg/ ml for 10 min. Cells were then washed with PBS, trypsinized, pelleted and 

resuspended in polysome buffer (20 mM Tris-HCl (pH 7.5), 10 mM NaCl, 3 mM MgCl2) 

containing 150 µg/mL cycloheximide and 100 units/mL Rnasin (Promega). After 

determining the cell number in each sample, Triton-X 100 was added to the cell 

suspension at a final concentration of 0.3% (v/v) and cells were passed through a 27-

gauge needle five times to ensure lysis. The nuclei were then pelleted by centrifugation at 

4°C and 12,000 x g for 5 min. The supernatant was then layered on a linear 10-50% 

sucrose gradient in polysome buffer containing 10µg/mL cycloheximide and 3.3 
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units/mL Rnasin and the gradients were centrifuged in a Beckmann SW41Ti Rotor at 

141,000 x g at 4°C for 4 h. The gradients were fractionated into 1-ml fractions, and the 

UV absorption at A254 was recorded. Twelve fractions were collected and RNA was then 

extracted from each fraction using TRIzol (Invitrogen). Equal volumes of each fraction 

were then reverse transcribed and real time PCR was performed as already described 

(222).  

Results 

Expression of fatty acid metabolizing enzymes in cultured adipocytes and primary 

adipose tissue. In order to establish a siRNA-based screen of broad scope, we first 

identified key enzymes in the major pathways of fatty acid metabolism that are clearly 

expressed in both mouse 3T3-L1 adipocytes and primary mouse adipose tissue. Figure 

2.1 illustrates 8 pathways of fatty acid metabolism that were considered for our studies, 

which include ω-oxidation, β-oxidation, α-oxidation, elongation, desaturation, nitration, 

epoxygenation/hydroxylation, and isomerization. Identification of the enzymes shown in 

Figure 2.1 was accomplished by Affymetrix GeneChip microarray analysis of samples 

obtained from 3T3-L1 preadipocytes versus 3T3-L1 adipocytes (6 days after initiation of 

differentiation) and from the adipose tissue of mice fed a normal diet versus a high fat 

diet for 16 weeks.  Table 2.1 presents the list of specific genes we selected by this 

analysis, all of which were found to be significantly expressed in both model systems.  

The fatty acid metabolizing enzymes shown in Table 2.1 and Figure 2.1 allow the 

generation of many different fatty acid products and derivatives from the same initial 

fatty acid substrate. A saturated fatty acid, such as palmitate, may be: 1.) ω- oxidized by 
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the cytochrome P450 enzyme CYP4f16, forming a dicarboxylic acid; 2.) β- oxidized in 

peroxisomes by the acyl CoA oxidases, ACOX1 and ACOX2, or in the mitochondria by 

the acyl CoA dehydrogenases, ACADl and ACADvl, cleaving two carbons per cycle 

from the fatty acid; 3.) α- oxidized in peroxisomes by phytanoyl CoA hydroxylase, 

cleaving one carbon per cycle from the fatty acid; 4.) elongated by ELOVL1, ELOVL3, 

ELOVL5, and ELOVL6, which are present in the endoplasmic reticulum, adding two 

carbons per cycle to the fatty acid; or 5.) desaturated by various enzymes found in the 

endoplasmic reticulum, including stearoyl CoA desaturase 1 or stearoyl CoA desaturase 

2, forming a cis-double bond between the 9 and 10 carbons, or fatty acid desaturase 1, 

fatty acid desaturase 2, or fatty acid desaturase 3, forming a cis-double bond between 5 

and 6, 6 and 7, and possibly the 4 and 5 carbons, respectively. In addition, the double 

bond in an unsaturated fatty acid may change position through the isomerase, ALOXe3, 

found in the cytoplasm, be nitrated by nitric oxide species produced by nitric oxide 

synthase, found in the cytoplasm, or be oxidized by the cytochrome P450 enzymes, 

CYP2f2, CYP2c55, CYP20a1, CYP26b1, CYP1b1, found in the endoplasmic reticulum, 

adding an epoxide, hydroxyl, or peroxyl group to the fatty acid. An epoxide may then be 

further metabolized by the epoxide hydrolase, EPHX1, present in the endoplasmic 

reticulum, or EPHX2, present in the cytoplasm, producing dihydrodiols. Additionally, 

these pathways can operate in tandem, changing the carbon length or position of a side 
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Gene Symbol Day 0 Day 6 3T3-L1 Adipogenesis Pvalue NC HFD NC vs HFD Pvalue

Signal Signal (fold change) Signal Signal (fold change)

Pparg 1397.00 7378.12 5.28 0.047 4522.00 2695.19 -1.68 0.011

Fasn 1853.79 10802.39 5.83 0.003 2679.69 7938.53 2.96 0.021

Scd1 313.88 11057.21 35.23 0.009 7304.06 9111.11 1.25 0.044

Scd2 4895.31 14465.96 2.96 0.009 65.83 2900.53 44.06 0.000

Scd3 103.88 448.77 4.32 0.010 11.60 13.67 1.18 0.071

Fads1 1648.81 3117.44 1.89 0.110 370.41 431.98 1.17 0.276

Fads2 1317.32 3045.47 2.31 0.170 65.57 139.48 2.13 0.002

Fads3 329.77 651.62 1.98 0.182 1020.65 1994.35 1.95 0.001

Elovl1 2111.08 2188.70 1.04 0.847 244.99 358.40 1.46 0.005

Elovl2 23.51 24.17 1.03 0.622 6.88 6.72 -1.02 0.690

Elovl3 232.19 1475.64 6.36 0.004 12.22 25.29 2.07 0.009

Elovl4 27.54 28.87 1.05 0.471 8.27 8.14 -1.02 0.603

Elovl5 2088.32 2522.17 1.21 0.354 1302.75 2108.06 1.62 0.006

Elovl6 240.29 136.43 -1.76 0.075 47.17 239.63 5.08 0.010

Acadvl 2210.50 9122.99 4.13 0.001 2373.59 2792.72 1.18 0.241

Acadl 1435.63 3993.85 2.78 0.001 4052.60 5396.23 1.33 0.016

Acox1 1198.38 5517.91 4.60 0.000 4693.07 4998.84 1.07 0.520

Acox2 189.52 1126.28 5.94 0.011 39.90 45.21 1.13 0.540

Acox3 204.71 430.64 2.10 0.002 107.82 122.26 1.13 0.200

Ephx1 2089.01 2380.93 1.14 0.856 590.19 1733.25 2.94 0.006

Ephx2 577.50 1980.53 3.43 0.003 5111.05 6246.07 1.22 0.025

Nos3 125.62 257.42 2.05 0.010 448.31 661.26 1.48 0.029

Cyp2f2 218.51 1251.98 5.73 0.011 483.70 166.21 -2.91 0.024

Cyp2c55 612.21 364.27 -1.68 0.049 9.09 9.13 1.00 0.960

Cyp4f16 356.39 252.67 -1.41 0.078 67.92 72.98 1.07 0.539

Cyp20a1 312.63 323.74 1.04 0.795 152.89 146.35 -1.04 0.781

Cyp1b1 969.70 408.26 -2.38 0.093 156.72 54.98 -2.85 0.012

Cyp51 673.89 3924.58 5.82 0.007 116.02 472.96 4.08 0.000

Aloxe3 411.81 443.56 1.08 0.356 59.06 63.00 1.07 0.489

Table 2.1. Affymetrix Gene Chip analysis of fatty acid metabolizing enzymes in 

differentiating 3T3-L1 adipocytes and primary adipocytes from mice fed a 

normal chow or high fat diet. RNA was collected from 3T3-L1 cells prior to 
differentiation or 2, 4, and 6 days post differentiation and subjected to Affymetrix 
Gene Chip analysis. RNA from three different samples was collected and pooled 
and then analyzed on one array; each experiment was done in triplicate resulting in a 
total of 9 RNA samples and three arrays for each timepoint. From the primary 
adipocytes, RNA was collected from 23 mice fed a normal chow diet and 14 mice 
fed a high fat diet for 18 weeks. The mice were divided into three groups within 
each diet condition, and the RNA from each group was pooled and then analyzed on 
one array, resulting in three arrays for each diet condition. Shown are representative 
values for the fold changes in gene expression during adipogenesis or due to high fat 
diet. Boldface shows values that are significantly up-regulated or down-regulated in 
response to 3T3-L1 differentiation. The values obtained for SCD1 and SCD2 are in 
the rectangle. The asterisk denotes a p value < 0.05. 
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Figure 2.1. Diagram showing the multiple pathways of fatty acid 

metabolism in adipocytes. A saturated fatty acid may be ω- oxidized, forming 
a dicarboxylic acid; β- oxidized, cleaving two carbons per cycle from the fatty 
acid; α- oxidized, cleaving one carbon per cycle from the fatty acid; elongated, 
adding two carbons per cycle to the fatty acid; or desaturated, forming a cis-
double bond between the 9 and 10, 5 and 6, 6 and 7, or possibly the 4 and 5 
carbons. The double bond in a desaturated fatty acid may then change position 
through isomerases or be nitrated or oxidized, producing various side groups 
on the fatty acid (see text for further details). 
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group or double bond within the fatty acid. Since a fatty acid produced from any one of 

these pathways may affect cell signaling events or other processes, these enzymes listed 

in Table 1 were targeted in a siRNA-based screen to determine if they affect adipocyte 

gene expression in 3T3-L1 cells. 

SCD2, but not SCD1, is required for 3T3-L1 adipogenesis. To identify fatty acid 

metabolizing enzymes that are required for 3T3-L1 adipogenesis, siRNA 

oligonucleotides directed against each of the enzymes identified by the microarray 

analysis in Table 2.1 were electroporated into 3T3-L1 preadipocytes prior to 

differentiation. Since PPARγ appears to be activated by an endogenous ligand during 

adipogenesis (174,198-200,218), we reasoned that if a depleted enzyme is required 

specifically for the production of a PPARγ ligand, the addition of an exogenous ligand 

may reverse the effect of such enzyme depletion.  Thus, in our screen the enzymes were 

also depleted in the presence of the PPARγ specific ligand, rosiglitazone, as a control. 

The initial screen monitored the mRNA transcript levels by real time PCR of the 

differentiation-induced proteins, PPARγ and GLUT4 (Figure 2.2). As expected, the well-

established required factors for adipocyte differentiation, PPARγ and FAS (215), did 

indeed attenuate PPARγ and GLUT4 expression in this screen when depleted by siRNA, 

and acted as positive controls. In addition, rosiglitazone treatment did not restore PPARγ 

or GLUT4 levels upon siRNA-based depletion of PPARγ (Figure 2.2 and Supplementary 

Figure 2.1).  Importantly, of the remaining 24 enzymes screened, only SCD2 depletion 

potently inhibited gene expression during adipogenesis (Figure 2.2A and 2.2B).   
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Figure 2.2. Depletion of SCD2 inhibits the mRNA expression of adipogenic 

markers in differentiating 3T3-L1 adipocytes. Confluent fibroblasts were 
electroporated with scrambled nucleotide as a control or SMART-pool siRNA 
directed against various fatty acid metabolizing enzymes and reseeded in duplicate 
wells as described in materials and methods. After 24 hours, the cells were 
differentiated in the presence or absence of 1 µM rosiglitazone. On the fourth day of 
differentiation, RNA was collected to determine the expression of (A) PPARγ, (B) 
GLUT4, or (C) SCD1 and SCD2 by real time PCR using AKT1 as an internal 
control. The results shown in (A) and (B) were performed once as part of the initial 
screen; the results shown in (C) are an average of three independent experiments and 
the asterisk denotes a p value < 0.01. 
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Interestingly, despite the predicted similarity in substrate selectivity between 

SCD1 and SCD2 (227), depletion of SCD1 in 3T3-L1 cells did not inhibit PPARγ or 

GLUT4 expression (Figures 2.2 and Supplementary Figure 2.1). Furthermore, the 

addition of rosiglitazone did not restore the transcript levels of PPARγ or GLUT4 upon 

loss of SCD2 or FAS (Figure 2.2 and Supplementary Figure 2.1). This suggests that if 

SCD2 and FAS are involved in PPARγ ligand production during adipogenesis, the 

enzymes are also required for an independent function.  

In an attempt to confirm and extend these findings, expression of PPARγ protein was 

measured in a second screen of 10 enzymes, again revealing that SCD2, but not SCD1, is 

absolutely required for expression of this transcription factor (Figure 2.3A). In addition, 

when preadipocytes differentiate into adipocytes, the cells become smaller and rounder, 

losing their fibroblastic morphology. The cells also acquire the ability to accumulate lipid 

in the form of triglyceride, appearing as lipid droplets in the cytoplasm (98,201). Oil Red 

O staining of accumulated neutral lipids in cells four days after the initiation of 

differentiation confirms that PPARγ and SCD2 are required for the lipid accumulation 

(Figure 2.3B) and morphological changes (data not shown) that occur during 

adipogenesis, while SCD1 is not. Therefore, SCD2, but not SCD1, is required for several 

aspects of adipogenesis, including the induction of adipocyte specific genes, the increase 

in lipid accumulation, and the gain in the adipocyte morphology. 

To verify that the inhibition of adipogenesis by depletion of PPARγ, FAS, or SCD2 is 

not due to general toxicity, metabolic activity was measured in the cells using the 

tetrazolium compound, MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-  
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Figure 2.3. Depletion of SCD2 inhibits adipogenic protein expression and 

morphological changes in differentiating 3T3-L1 adipocytes. Confluent fibroblasts 
were electroporated with scrambled nucleotide as a control or SMART-pool siRNA 
directed against various fatty acid metabolizing enzymes and reseeded in duplicate wells 
as described in materials and methods. After 24 hours, the cells were differentiated in 
the presence or absence of 1 µM rosiglitazone. On the fourth day of differentiation, (A) 
protein was collected to determine the expression of PPARγ by western blot using 
PTEN as a loading control; densitometry values reflect the ratio of PPARγ to PTEN. (B) 
Cells were electroporated and differentiated as described in (A), then fixed and stained 
with Oil Red O four days post differentiation. 
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2-(4-sulfophenyl)-2H-tetrazolium]. MTS is reduced by the cells to a colored formazan 

product, presumably by NADPH or NADH produced by dehydrogenase enzymes, and 

therefore is an indirect measure of dehydrogenase activity. As seen in Figure 2.4A, 

depletion of the various enzymes using siRNA did not cause a reduction in 

dehydrogenase activity, and therefore the inhibition of adipogenesis does not appear to be 

due to general toxicity.  

We also found an increase in the expression of several caspases with SCD2 depletion 

(Supplementary Table 2.1). Since caspases are involved in apoptosis, a TUNEL (TdT-

mediated dUTP Nick-End Labeling) assay was performed to ensure that the siRNA 

treatment does not induce apoptosis. This assay utilizes flourescein-12-dUTP and 

terminal deoxynucleotidyl transferase to fluorescently label the fragmented DNA of 

apoptotic cells on the free 3’OH DNA ends. The fluorescence of the cell population is 

then quantitated by flow cytometry to determine the extent of apoptosis occurring within 

the cell population. As can be seen in Figure 2.4B, depletion of PPARγ, FAS, SCD1, or 

SCD2 does not induce apoptosis, and therefore the ffects on gene expression are not due 

to this toxic event. 

SCD2, but not SCD1, is required for adipocyte-specific gene expression in fully 

differentiated adipocytes. Real time PCR analysis reveals that SCD2 expression is higher 

in preadipocyte fibroblasts than SCD1 expression (Supplementary Figure 2.2A and 

2.2C), but six days after the induction of differentiation, SCD1 expression increases by 

23 fold (Supplementary Figure 2.2B), while SCD2 expression only increases by 

approximately 8 fold (Supplementary Figure 2.2B and 2.2C). This dramatic induction of 
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Figure 2.4. The treatment of cultured 3T3-L1 cells with siRNA does not 

induce toxicity. (A) Confluent 3T3-L1 fibroblasts were transfected with PBS or 
scrambled nucleotide as controls or SMART-pool siRNA against PPARγ, FAS, 
SCD1, or SCD2 transcript and differentiated as described. Toxicity was then 
determined using the colorimetric MTS cell proliferation assay (Promega). (B) 
Seven days post differentiation, adipocytes were electroporated with PBS or 
scrambled nucleotide as controls or siRNA against PPARγ, FAS, SCD1, or 
SCD2 transcript. After 72 hours, the cells were labeled for apoptosis using the 
TUNEL assay kit (Promega), and positively labeled cells were determined by 
FACS analysis. Dnase treated cells acted as the positive control. 
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SCD1 expression results in higher SCD1 than SCD2 expression in fully differentiated 

cells (Supplementary Figure 2.2A and 2.2C). Since SCD2 depletion inhibits the increase 

in SCD1 expression during adipogenesis (Figure 2.2C), perhaps the inhibition of 

adipogenesis is not due solely to SCD2 depletion, but is dependent on a decrease in total 

desaturase activity. Therefore, perhaps the more profound effect of SCD2 depletion on 

adipogenesis is simply due to its higher expression in the preadipocyte. We therefore 

tested whether SCD1 or SCD2 are required to sustain adipocyte-specific gene expression 

in fully differentiated adipocytes (seven days after initiation of differentiation), when 

SCD1 expression is dramatically higher than SCD2 expression (Supplementary Figure 

2.2C). Remarkably, real time-PCR analysis of the products of several adipocyte genes 

revealed that SCD2, but not SCD1, is necessary for optimal expression of the PPARγ 

regulated genes, PEPCK and ACCβ, in fully differentiated cells (Figure 2.5A). However, 

SCD2 knockdown in these fully differentiated adipocytes only caused a minor decrease 

in PPARγ mRNA expression (Figure 2.5A), in contrast to SCD2 depletion in cells prior 

to differentiation (Figure 2.2A).  Therefore, the expression of PPARγ1 and PPARγ2 

protein was determined by western blot (Figure 2.5B). Surprisingly, the protein levels of 

both PPARγ isoforms were markedly decreased in fully differentiated adipocytes upon 

siRNA-mediated depletion of SCD2 and not affected by depletion of SCD1. FAS is also 

required for PEPCK and ACCβ expression in fully differentiated cells, but this effect is 

not due to a decrease in PPARγ expression, since FAS depletion did not cause a 

significant decrease in PPARγ mRNA or protein expression (Figures 2.5A and 2.5B). 

Thus, the maintenance of PPARγ protein in fully differentiated cultured adipocytes is 
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Figure 2.5. SCD2 is required for PPARγ protein, but not mRNA expression, as well 

as the expression of the PPARγ regulated genes, Pepck and ACCβ, in fully 

differentiated 3T3-L1 adipocytes. Seven days post differentiation, adipocytes were 
electroporated with PBS or scrambled nucleotide as controls or siRNA against PPARγ, 
FAS, SCD1, or SCD2 transcript. After 72 hours, (A) RNA was collected to determine the 
expression of adipogenic markers by real time PCR using AKT1 as an internal control; or 
(B) protein was collected to determine the expression of PPARγ by western blot. Changes 
in protein expression were quantified by densitometry; the values for PPARγ represent 
both PPARγ1 and PPARγ2 isoforms, since both isoforms show a similar decrease. The 
values represent the average of 3 independent experiments and the asterisk denotes a p 
value < 0.05. 
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specifically dependent on SCD2 activity, explaining the requirement of SCD2 for PEPCK 

and ACCβ gene expression. 

In order to compare the sets of adipocyte genes regulated by SCD2 depletion versus 

PPARγ depletion, Affymetrix Gene Chip analysis was performed in fully differentiated 

adipocytes electroporated with siRNA directed against PPARγ, SCD1, or SCD2. Figure 

2.6 illustrates the results of this analysis as a heat map showing the comparison of 

genesthat change in expression with the different siRNA treatments. The green bars 

represent genes that are significantly upregulated and the red bars represent genes that are 

significantly down regulated in the cells treated with siRNA versus scrambled nucleotide 

control. Not surprisingly, SCD2 depletion has a profound effect on gene expression that 

strongly parallels the effects of PPARγ depletion, while loss of SCD1 shows no similarity 

to PPARγ depletion in its effect on gene expression (Figure 2.6). Likewise, a closer 

analysis of genes highly expressed in the adipocyte reveals similar changes in gene 

expression due to PPARγ and SCD2 depletion, but not SCD1 depletion (Supplementary 

Table 2.1).  In these experiments, PPARγ depletion by siRNA was only about 50% (data 

not shown). Therefore, these results demonstrate the powerful requirement of PPARγ for 

optimal adipocyte-specific gene expression, as previously published (203). Furthermore, 

these results illustrate the distinct roles that the highly similar desaturases, SCD1 and 

SCD2, fulfill in the fully differentiated adipocyte. 

SCD2 is required for optimal protein synthesis in 3T3-L1 adipocytes. The reduction 

in PPARγ protein but not mRNA expression in response to SCD2 depletion in fully 

differentiated adipocytes may be due to a decrease in its synthesis or an increase in its  



 62

 

 

 

 

 

 

 

 

Figure 2.6. Depletion of SCD2, but not SCD1, attenuates the expression 

of PPARγ-regulated genes. Heat map showing the comparison of genes that 
change in expression with PPARγ, SCD2, or SCD1 depletion. Seven days 
post differentiation, adipocytes were transfected with siRNA against PPARγ, 
SCD2, SCD1, or scramble nucleotide control and RNA was collected after 
72 hours to perform Affymetrix GeneChip analysis. The first column is a 
comparison of scrambled nucleotide versus PPARγ depletion; the second 
column is a comparison of scrambled nucleotide versus SCD2 depletion; the 
third column is a comparison of scrambled nucleotide versus SCD1 
depletion. Green bars represent genes that are significantly up regulated and 
red bars represent genes that are down regulated (p<0.05). 
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Figure 2.7. SCD2 depletion does not enhance degradation of PPARγ. Seven 
days post differentiation, adipocytes were electroporated as described and after 
24 hours of siRNA transfection, cells were treated with 5 µM cycloheximide. 
Protein was collected at the indicated timepoints and analyzed by western blot. 
Shown is a representative blot. Proteins were quantified by densitometry and the 
0.5-3h timepoints were normalized to the time 0 timepoint for each condition to 
calculate the fold change in time for protein turnover. The graph illustrates the 
average of 6 independent experiments.  
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degradation.  Cultured adipocytes were therefore treated with cycloheximide to inhibit 

protein synthesis and determine if PPARγ degradation is increased upon loss of SCD2. 

Using this standard method to determine the protein degradation rate in the presence of 

cycloheximide, PPARγ protein levels were assessed in adipocytes that were 

electroporated with scrambled siRNA or siRNA directed against SCD2. As seen in 

Figure 2.7, the rate of loss of PPARγ protein is rapid upon this treatment, exhibiting 

ashort half life of approximately 1.5 hours similar to what has been previously reported 

(228). However, the rate of PPARγ degradation is similar between control and SCD2-

depleted cells, indicating no change in response to loss of SCD2. Therefore, these results 

confirm rapid turnover of PPARγ protein in adipocytes and indicate that SCD2 is not 

promoting PPARγ degradation.  

The results in Figure 2.7 indicate that the decrease in PPARγ protein levels in 

response to the loss of SCD2 in fully differentiated adipocytes is due to decreased 

synthesis of PPARγ protein. In order to determine if SCD2 is required for PPARγ protein 

synthesis, newly synthesized protein was labeled with [35S] methionine/cysteine and 

PPARγ protein was immunoprecipitated from control and SCD2 depleted cells. The 

radioactive signal generated from the immunoprecipitated protein indicates protein that 

has been newly synthesized, whereas the western blot of the immunoprecipitated protein 

shows the total amount of protein present. As seen in Figure 2.8, newly synthesized 

PPARγ1 and PPARγ2 are reduced by approximately 50% in the SCD2 depleted cells, 

which is similar to the decrease in total protein levels (Figures 2.8 and 2.5B). Therefore,  
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Figure 2.8. SCD2 depletion inhibits the synthesis of PPARγ protein. Seven days 
post differentiation, adipocytes were electroporated as described and 72 hours after 
siRNA transfection, cells were metabolically labeled with [35S] Met/Cys, washed 
several times, and protein was collected for PPARγ immunoprecipitation and 
western blot. The radioactive signal was visualized using a phosphorimager 
(Molecular Dynamics) and quantified by densitometry. Shown is a representative 
immunoprecipitation of PPARγ labeled with [35S] Met/Cys or anti-PPARγ antibody. 
The graph illustrates the average of three experiments and the asterisk denotes a p 
value < 0.01.  
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since PPARγ degradation is not altered (Figure 2.7), the decrease in newly synthesized 

protein appears to be due to a decrease in protein synthesis.  

A common method to monitor the translational efficiency of a particular mRNA is 

by polysome profile analysis. This methodology separates monosomes from polysomes 

using a sucrose density gradient, which is then fractionated to generate an absorbance 

profile indicating which fractions contain monosomes and polysomes. Subsequently, 

mRNA is isolated from each fraction to determine the degree to which a particularmRNA 

associates with monosomes or polysomes. To verify that translation of PPARγ is indeed 

decreased in response to SCD2 depletion, polysome profile analysis was performed and 

the distribution of PPARγ mRNA with monosomes and polysomes was determined. The 

UV absorbance at A254 reveals a decrease in the absorbance in the heavy polysome 

fractions and an increase in absorbance in the light polysome and 80S monosome 

fractions in cells depleted of SCD2, suggesting that less ribosomes are associated with 

mRNA and there is a global reduction in translation. Real time PCR analysis also reveals 

that the PPARγ mRNA shifts toward the lighter polysome and monosome fractions, 

confirming that PPARγ is less efficiently translated in the absence of SCD2 (Figure 2.9). 

Therefore, the decrease in PPARγ protein expression is due to a decrease in general 

protein synthesis and is not specifically affecting PPARγ translation. 

Discussion 

The major finding reported here is the unexpected requirement of the fatty acid 

desaturase isoform SCD2 for both adipogenesis and the maintenance of the adipocyte 

phenotype in cultured 3T3-L1 cells (Figures 2.2, 2.3, 2.5, 2.6, and Supplementary Figure  
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Figure 2.9. SCD2 depletion decreases polysome association with 

mRNA in cultured adiocytes. Seven days post differentiation, 
adipocytes were electroporated as described and after 24 hours of 
siRNA transfection, cytoplasmic extracts were prepared and 
fractionated on a 10-50% sucrose gradient. The absorbance of each 
fraction was determined at A254 and total RNA was extracted from 

fractions 2-13. PPARγ mRNA was quantified from equal volumes of 
the fractions using real time PCR and expressed as a percentage of the 

maximum PPARγ mRNA in each sample. The data shown represents 
one of four experiments with similar results. 
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2.1).  SCD2 regulates adipogenesis at least in part by controlling the transcription of the 

nuclear receptor PPARγ (Figure 2.2A and Supplementary Figure 2.1), while in fully 

differentiated adipocytes SCD2 is required for optimal protein synthesis, including 

PPARγ translation (Figures 2.7, 2.8, and 2.9). Thus, in 3T3-L1 preadipocytes and 

adipocytes PPARγ protein levels are remarkably dependent on the expression levels of 

SCD2. Interestingly, the inhibition of adipogenesis by SCD2 depletion was not restored 

by the addition of the PPARγ-specific ligand, rosiglitazone (Figures 2.2, 2.3, and 

Supplementary Figure 2.1).  Therefore, SCD2 does not appear to be regulating the 

production of a PPARγ ligand. Rather, these data indicate that in preadipocytes one or 

more unsaturated fatty acids generated by the SCD2 enzyme or a protein-protein 

interaction dependent on SCD2 is necessary for the normal functioning of the 

transcriptional machinery that drives PPARγ expression and also to maintain protein 

synthesis rates in mature adipocytes.  

The surprisingly powerful effects of depleting SCD2 in cultured adipocytes 

suggest a special role for this enzyme in adipocyte function. We tested the effects of 

depleting 24 enzymes that catalyze reactions in fatty acid metabolism in our siRNA-

based screen, but only FAS and SCD2 were found to be necessary for adipogenesis 

(Figure 2.2, 2.3, and Supplementary Figure 2.1). Mice express 4 isoforms of SCD 

(SCD1-4), which exhibit approximately 80% sequence similarity, while humans have two 

isoforms (SCD1 and SCD5), which are approximately 60% similar in sequence (229-

231). However, all four mouse SCD isoforms are nearly 80% similar to human SCD1 
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Supplementary Figure 2.1. Depletion of SCD2 inhibits PPARγ and GLUT4 

mRNA expression in differentiating 3T3-L1 adipocytes. The experiments 
were performed as described in Figure 2 and the results show the average of 
three independent experiments. The asterisk denotes a p value < 0.01. 
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Supplementary Figure 2.2. SCD2 is more highly expressed than SCD1 in 

preadipocyte fibroblasts, but SCD1 is more highly expressed than SCD2 

in fully differentatiated adipocytes. RNA was collected from confluent 3T3-
L1 fibroblasts prior to differentiation or from cultured adipocytes four days 
post differentiation and analyzed by real time PCR using AKT1 as an internal 
control. (A) The threshold cycle values for SCD1 and SCD2 mRNA in 
fibroblasts and adipocytes; threshold cycle values represent the number of 
PCR cycles required for the amplified target to reach a fixed threshold and 
hence a higher threshold cycle value indicates less RNA (1). (B) The changes 
in SCD1 and SCD2 mRNA expression during differentiation; the values for 
SCD1 and SCD2 in adipocytes are normalized to the respective value for 
SCD1 and SCD2 in fibroblasts. (C) A comparison of SCD1 and SCD2 
expression in fibroblasts and adipocytes; the values for SCD1 and SCD2 in 
both fibroblasts and adipocytes are normalized to the value for SCD2 
expression in fibroblasts to allow a direct comparison of mRNA levels in both 
cell types. 
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Supplementary Table 2.1. SCD2 and PPARγ depletions cause parallel 

changes in adipocyte gene expression, while SCD1 depletion does not. The 
experiments were performed as described in Figure 6 and the Table shows values 
for changes in expression of specific selected genes due to siRNA treatment.  
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(229,230,232,233). Mouse SCD1 is the best characterized SCD isoform and is expressed 

in adipose tissue, liver,muscle, and sebaceous glands; SCD2 is expressed ubiquitously; 

SCD3 is expressed in the harderian gland and in sebocytes in the skin; and SCD4 is 

expressed in the heart (229). The reason for multiple highly homologous isoforms in the 

mouse has remained unclear, especially since SCD1 and SCD2 apparently utilize the 

same substrates with the same efficiency (227). One possible explanation for the 

redundancy in SCD isoforms is the need for differential expression in various tissues 

during specific stages of development (229). However, depletion of SCD1 in fully 

differentiated cells did not have a major impact on adipocyte-specific gene expression, 

despite the higher expression of SCD1 versus SCD2 (Supplementary Figure 2.2C). 

Therefore, in spite of the predicted similarity in substrate usage, and common cellular 

localizations of the enzymes, SCD1 and SCD2 appear to have disparate cellular functions 

in 3T3-L1 adipocytes (227,229,232,233).  Interestingly, Affymetrix Gene Chip analysis 

reveals that when mice are put on a high fat diet, SCD2 expression increases 44 fold, 

while SCD1 expression shows little change (Table 2.1).  These data suggest that SCD2 

may also have a specific role in promoting adipogenesis in vivo, since its expression 

increases during a time of increased adipogenesis (234), despite the already high 

expression of SCD1 (232,235). 

It should be noted that the requirement for a ∆9 desaturase during adipogenesis is 

somewhat surprising since Gomez et al showed that adipogenesis of 3T3-L1 cells is not 

affected when induced in the presence of the SCD chemical inhibitor, sterculic acid 

(236).  Perhaps this discrepancy can be explained by a selectivity of the inhibitor for the 
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highly homologous protein, SCD1, thereby preserving SCD2 activity and adipogenesis. 

This would be consistent with our results showing that the depletion of SCD1 did not 

attenuate adipogenesis. Another possibility is that SCD2 activity is not required, only its 

expression. Nevertheless, our studies presented here are not the first evidence suggesting 

separate cellular functions of the enzymes, since SCD1 deficiency leads to skin 

abnormalities despite SCD2 expression in the skin (230).  

PPARγ protein expression was dramatically reduced upon SCD2 depletion in mature 

adipocytes (Figures 2.3A and 2.5B), which explains why there is a decrease in the 

expression of many PPARγ-regulated genes (Figure 2.5A). Furthermore, the reduction in 

PPARγ protein expression is due to a decrease in general protein synthesis and not 

degradation, since the turnover of PPARγ protein when protein synthesis is inhibited by 

cycloheximide is unaffected by the depletion of SCD2 (Figure 2.7).  Consistent with this 

interpretation, there is a decrease in newly synthesized PPARγ protein as determined by 

[35S] methionine/cysteine labeling (Figure 2.8) and in the association of actively 

translating ribosomes with mRNA, including PPARγ mRNA (Figure 2.9).               

Since SCD2 is required for general protein synthesis, PPARγ is not the only protein 

that is reduced in expression upon SCD2 depletion. In fact, examination of the total lysate 

from cells labeled with [35S] methionine/cysteine shows a significant 15% decrease in 

newly synthesized protein from SCD2 depleted cells (data not shown). Unlike PPARγ 

however, many proteins decrease in expression on the transcript level; conversely, many 

transcripts also increase in expression with SCD2 depletion (Figure 2.6), which taken 

together makes it difficult to determine the effect of SCD2 on total protein synthesis. 
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SCD2 depletion does result in the posttranscriptional decrease in expression of proteins 

other than PPARγ, such as AKT1 and β catenin.  The decreased expression of these 

proteins also appears to be due to a decrease in translational efficiency since the 

association of AKT1 and β catenin mRNA shifts from polysomes to monosomes (data 

not shown). However, we have not verified that the synthesis of these proteins is 

decreased using [35S] methionine/cysteine metabolic labeling or determined if the 

degradation rate of these proteins increases with SCD2 depletion; therefore, we can not 

conclude that the decrease in their expression is due to a decrease in translation. 

Altogether, our data indicate that unsaturated fatty acids may regulate a pathway to 

enhance the machinery of protein translation in adipocytes. Since oleate is a major 

unsaturated fatty acid product of SCD2, we tested whether exogenous addition of oleate 

would restore the decrease in PPARγ protein levels with SCD2 depletion (227,229). 

However, even addition of oleate at a concentration as high as 1mM, did not restore 

PPARγ levels (data not shown). Therefore, perhaps SCD2 is required to produce an 

unsaturated fatty acid other than oleate, or is required for the proper shuttling of an 

unsaturated fatty acid, as seen with linoleate in the SCD2 knockout mouse (229), or is 

necessary for a protein-protein interaction that regulates translation.    

To our knowledge, the only previously published evidence of regulation by 

unsaturated fatty acids of protein synthesis is by arachadonic acid or eicosapentaenoic 

acid (EPA). Arachadonic acid has been shown to both activate and inhibit protein 

translation in diverse cell systems, while EPA has been shown to inhibit translation 

initiation by inducing eIF2α phosphorylation (237-239). Therefore, we examined eIF2α 
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phosphorylation in response to depletion of SCD2, but did not find a difference between 

SCD2-depleted and control adipocytes (data not shown). Protein synthesis can also be 

controlled through the protein kinases AMPK and mTOR (240). An increase in AMPK 

activity could lead to decreased peptide elongation through activation of eEF2 kinase, 

which then phosphorylates and inhibits eEF2, a factor that promotes protein chain 

elongation. Interestingly, this pathway may be regulated by unsaturated fatty acids, since 

SCD1 deficiency in mice leads to increased AMPK activity in the liver (241). In SCD2 

depleted adipocytes, we did find an approximate 80% increase in AMPK phosphorylation 

and a small 20% increase in eEF2 phosphorylation compared to control cells (data not 

shown). However, these increases in AMPK and eEF2 phosphorylation associated with 

SCD2 depletion do not appear to mediate the decrease we observe in protein synthesis, 

since eliminating the increase in phosphorylation of eEF2 by the dual depletion of eEF2 

kinase and SCD2 did not restore PPARγ protein levels (data not shown). It is reported 

that mTOR positively regulates protein synthesis by phosphorylating and activating 

RS6K and 4EBP1 (242,243). While SCD2 depletion causes a reduction in RS6K and 

4EBP1 protein levels, it does not reduce the phosphorylation of these proteins, suggesting 

the mTOR pathway is not affected (data not shown). Consistent with these results, 

inhibition of mTOR with rapamycin also decreases RS6K1 and RS6K2 activity, but does 

not affect PPARγ levels (242,244,245). Therefore, it remains unclear how SCD2 

regulates mRNA association with polysomes, and this is an important question for future 

studies to address.   
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It will also be interesting in future studies to test whether SCD2 plays a unique role in 

modulating glucose homeostasis in mice. White adipose tissue is a key regulator of whole 

body metabolism through its ability to control glucose disposal and insulin sensitivity in 

peripheral tissues (196,220). This regulation appears to be mediated by two main 

mechanisms (195,196,220): 1.) storing excess fatty acids in the form of triglyceride to 

prevent lipotoxicity in peripheral tissues and 2.) secreting insulin-sensitizing factors, such 

as adiponectin.  PPARγ plays a central role in both of these processes by promoting 

expression of genes involved in fatty acid esterification to triglyceride (195) and the 

expression of adiponectin (195,246).  SCD2 may have profound influence on these 

processes through its regulation of PPARγ and adipogenesis. Unfortunately, SCD2 -/- 

mice do not survive and can’t be studied in this regard. Thus, these important questions 

regarding the physiological role of SCD2 in whole body metabolism must await the 

generation of mouse models with tissue-specific depletion of this enzyme. 

Limitations and Future Perspectives 

 While the findings in this study clearly support the role of SCD2 in maintaining 

PPARγ expression in fully differentiated adipocytes, there are still many questions that 

remain regarding SCD2 function both during adipogenesis and in fully differentiated 

cells. In mature adipocytes, PPARγ expression is dramatically dependent on SCD2 

expression, but whether it is dependent on SCD2 activity remains to be determined. It 

could be that SCD2 controls the assembly of protein synthesis machinery by acting as a 

scaffolding protein rather than as a desaturase. To clarify this, a desaturase dead mutant 

of SCD2 could be overexpressed in SCD2 depleted cells to determine if PPARγ protein 
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and adipocyte gene expression are restored. If SCD2 desaturase activity is required to 

regulate protein synthesis, then identification of its fatty acid products would be 

beneficial to understanding how fatty acids regulate adipocyte biology. This could be 

accomplished by global lipid analysis using mass spectrometry and identifying the 

desaturated lipids that are reduced in cells depleted of SCD2, but show no change with 

depletion of SCD1. While this methodology would be intensive, given the multitude of 

desaturated fatty species present in adipocytes, it could be accomplished. Then, SCD2 

depleted cells could be cultured in the presence of the identified fatty acids to determine 

which fatty acids restore protein synthesis. 

It is also unclear if the effects of SCD2 depletion on gene expression are due 

solely to a loss in PPARγ expression. To address this question, adenoviral overexpression 

of PPARγ could be used in cells depleted of SCD2 to determine if adipocyte gene 

expression is rescued. If rescue occurs, then the effects of SCD2 depletion are due to a 

loss specifically in PPARγ protein and not other proteins. However, since protein 

synthesis is attenuated, a high titer of adenovirus may be needed to restore PPARγ 

protein levels. In addition to regulating PPARγ expression, SCD2 may also regulate 

PPARγ ligand production. If adenoviral overexpression of PPARγ does not rescue gene 

expression, but then the addition of a synthetic agonist does, then this suggests that SCD2 

also regulates PPARγ ligand production.  

 In this study, SCD2 was required for adipogenesis as well as the maintenance of 

gene expression in fully differentiated adipocytes. However, it is not known if the 

function of SCD2 during adipogenesis is also to maintain PPARγ protein expression. To 
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determine if SCD2 also regulates protein synthesis in preadipocytes, polysome analysis 

could be performed in preadipocytes depleted of SCD2 to determine if ribosome 

association with mRNA is attenuated. Also, to determine if the inhibition of adipogenesis 

is due to a loss in PPARγ specifically, adenoviral overexpression of PPARγ could be 

used to determine if adipogenesis is restored in the absence of SCD2. Additionally, it is 

unclear if SCD1 has any role during adipogenesis, since SCD2 depletion inhibits the 

induction of SCD1. Therefore, adenoviral overexpression of SCD1 in the absence of 

SCD2 would determine if this isoform also has a role during adipogenesis. 

 Although these findings increase the understanding of adipocyte biology in vitro, 

they are only important if also found in vivo. This would require analysis of the 

preadipocytes and adipocytes from the SCD2 knockout mouse to determine if PPARγ 

expression, adipogenesis, and protein synthesis are decreased. Additionally, in the small 

number of SCD2 knockout mice that survive past weaning, SCD1 expression increases 

and they return to a wild type phenotype, suggesting the SCD1 can compensate for the 

loss in SCD2 function in vivo (229). However, these mice were never put on a high fat 

diet, which is when SCD2 expression increases in the adipose tissue. Perhaps under these 

conditions, SCD1 functions in triglyceride synthesis and SCD2 is required for other 

synthetic pathways, such as protein synthesis. Therefore, in mice fed a high fat diet, 

SCD2 may be required to maintain adipocyte function and perhaps the SCD2 knockout 

mice would be more insulin resistant and glucose intolerant than their wild type 

counterparts.  
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While rodent models provide exceptional insight into protein function, the true 

importance is how the findings relate to human biology. Humans only produce one SCD 

isoform that is highly homologous to both mouse SCD1 and SCD2 (247). Therefore, it 

would be interesting to see if depletion of SCD1 in human preadipocytes attenuates 

protein synthesis and adipogenesis. In summary, this study identifies a novel function for 

SCD2 in mouse adipocyte biology, but the findings need to be substantiated in primary 

cells and extended to human adipocytes. 
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Chapter III: The carboxy terminus of Cidea facilitates lipid droplet 

binding and triglyceride accumulation 

 
Disclaimer: The author performed all experiments, except Anil Chawla helped design 
and generate the GFP and HA tagged constructs used for all experiments.  
 

Abstract 

It is now known that the CIDE-domain containing protein, Cidea, inhibits 

lipolysis and promotes lipid storage in both human and mouse adipocytes. In mice, data 

suggests that Cidea may prevent lipolysis by binding and shielding the lipid droplet from 

lipase association. However, it was not known if the human isoform of Cidea also binds 

to lipid droplets and the mechanism by which binding occurs. Here, we show that human 

Cidea binds to lipid droplets in both adipocytes and non-adipocyte cell lines and 

stimulates triglyceride accumulation. Additionally, both lipid droplet localization and 

triglyceride accumulation are solely dependent on the carboxy terminal 104 amino acids, 

indicating the presence of both the lipid droplet targeting and trigylceride shielding 

domains. Furthermore, Cidea overexpression causes a striking change in lipid droplet 

morphology in which lipid droplets become large in size and few in number, suggesting 

that Cidea may promote lipid droplet fusion. This change in lipid droplet morphology 

requires both the amino and carboxy terminal domains and may be important to regulate 

the efficient packing and storage of triglyceride in adipocytes, revealing a novel role for 

Cidea.  

Introduction 

 An important mechanism to survive famine is the ability to store energy when 

nutrients are available to use during times when nutrients are not available. One efficient 
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method of storing excess energy is in the form of triglyceride, which provides 9300 

kcalories of energy per kilogram of fatty acid (89). The major triglyceride storage site in 

the body is the adipose tissue, since it expresses many lipid-metabolizing enzymes and is 

able to accumulate large amounts of lipid without suffering cellular toxicity. However, if 

the adipose tissue loses the ability to store triglyceride, then fatty acids accumulate in 

peripheral tissues, such as the muscle and liver, causing lipotoxicity and metabolic 

perturbations (4,96,126). This phenomenon commonly occurs during obesity, which is 

now a global health devastation due to its associated medical disorders, such as type 2 

diabetes, hypertension, dyslipidemia, and atherosclerosis (8,248). Therefore, 

understanding how adipocytes regulate fatty acid storage and release is detrimental in 

identifying how obesity causes these serious metabolic disorders. 

 The adipose tissue stores triglyceride and other neutral lipids in lipid droplets, 

which are composed of a neutral lipid core surrounded by a phospholipid monolayer and 

associated proteins (62,64). There have been many proteins found associated with lipid 

droplets and include members of the PAT family (Perilipin, ADRP, Tip47, S3-12, and 

OXPAT) , the CIDE family (Cidea, Cideb and Cidec, or FSP27 in mice), caveolin 1, 

SNARE proteins, various lipid synthesizing enzymes, lipases (HSL and ATGL), the RAB 

family of GTPases, and the small GTPase, ARF1 (63,65,66,69-74,249-252). These 

proteins are involved in lipid droplet formation and fusion and in regulating lipid storage 

and turnover. However, the list of associated proteins continues to grow, as does our 

understanding of lipid droplet biology.  
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Although once considered a simple storage site, the lipid droplet is now 

considered a dynamic organelle that greatly impacts many cellular processes. It provides 

fatty acids for energy production, phospholipid, and membrane biosynthesis, cholesterol 

for membrane rigidity, and acts as a depot for proteins involved in transcription and 

apoptosis (64,67). It is also possible that different lipid droplets are involved in different 

cellular functions, with the function being dictated by which proteins are associated. This 

idea is supported by the fact that some proteins are found on mutually exclusive subsets 

of lipid droplets, as seen with RAB18 and ADRP (64,65). Additionally, in response to 

lipolytic stimuli, not all droplets are associated with the same proteins or lipases, 

suggesting only a subset is involved in fatty acid release under these conditions 

(64,65,82). 

 In addition to their important role in maintaining cellular function, lipid droplet 

proteins also regulate whole body energy homeostasis. For example, Perilipin, Cidea, and 

FSP27 knockout mice remain lean and insulin sensitive when put on a high fat diet. 

Consistent with the idea that these proteins regulate lipid storage, these mice have lower 

intracellular triglyceride levels and adipose tissue weight (80,253,254). These findings 

suggest that these proteins may promote obesity and insulin resistance by increasing fat 

storage. However, mice have large amounts of brown adipose tissue, which is dense with 

mitochondria and efficiently oxidizes fatty acids. Therefore, a loss in the lipid storage 

capability in the adipose tissue of mice may not lead to peripheral lipotoxicity, if the BAT 

effectively oxidizes and lowers serum fatty acid levels. In fact, the cidea knockout mice 
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have increased lipolysis in the BAT, but not increased fatty acid release, suggesting the 

BAT is indeed capable of oxidizing the released fatty acids (80). 

Humans, on the other hand, only have a very small amount of brown adipose 

tissue. Thus, if the white adipose tissue loses the ability to efficiently store lipid, it is 

likely to lead to peripheral lipotoxicity and insulin resistance. Consistent with this idea, 

Puri et al found that in BMI matched patients, there was a positive correlation with Cidea, 

Cidec, and perilipin expression and insulin sensitivity in the adipose tissue (72). This 

suggests that these proteins protect humans from developing insulin resistance when high 

levels of fatty acids are present. Furthermore, Nordstrom et al found that siRNA mediated 

depletion of Cidea in human preadipocytes resulted in increased lipolysis, supporting the 

idea that, similar to mouse cidea, human cidea regulates adipocyte lipid storage (79). 

However, in contrast to mice, these two studies suggest that a loss in Cidea function in 

the human results in a negative rather than a positive effect on insulin sensitivity. 

Due to the impact that Cidea has on whole body metabolism in mice and possibly 

humans, it is crucial to understand how Cidea regulates adipocyte lipid storage. In this 

study, we show that human Cidea binds to lipid droplets and stimulates triglyceride 

storage. Since previous studies suggest that Cidea inhibits lipolysis, the increase in 

triglyceride is most likely due to a decrease in lipolysis rather than an increase in 

triglyceride synthesis (79,80). We also determined that the binding to the lipid droplet 

and the stimulation of triglyceride accumulation is solely dependent on the carboxy 

terminus. Additionally, Cidea induces large lipid droplet formation while simultaneously 

reducing the number of lipid droplets, suggesting that Cidea may regulate lipid droplet 



 85

fusion. This change in lipid droplet morphology is not required for triglyceride 

accumulation, but is dependent on both the amino and carboxy terminal domains. While 

this function of Cidea does not appear to have a significant impact on triglyceride 

storage, it may allow more compact lipid storage within the adipocyte and reduce the 

intracellular space occupied by triglyceride. Altering lipid storage in this manner would 

be beneficial to adipocytes, since they accumulate excessive amounts of triglyceride and 

need to maximize their efficiency in storing lipid. 

Experimental Procedures 

Materials- Rabbit anti-human calreticulin IgG was purchased from Calbiochem. 

Mouse anti-HA IgG (monoclonal HA.11) was purchased from Covance. Alexa 568 

donkey anti-rabbit IgG, Alexa 488 chicken anti-mouse IgG, and Prolong Gold anti-fade 

reagent were purchased from Invitrogen. The free glycerol and triglyceride determination 

kit and oil-red-O were purchased from Sigma.  

Plasmids- Cidea cDNA was purchased from Open Biosystems. PCR was 

performed to generate cDNA encoding a full length or truncated product by using a 5’-

linker containing a Bgl2 restriction site and a 3’-linker containing a Sal1 site. After 

cutting with the restriction enzymes, the purified PCR fragments were cloned into 

pEGFPC1 vector (Clontech, USA). For the generation of HA tagged proteins, PCR was 

performed using a 5’-linker containing a MLU1 restriction site and a 3’-linker containing 

a Sal1 site. After cutting with the restriction enzymes, the purified PCR fragments were 

cloned into 3XHA-pCMV5 (F3) vector. This vector was generated from the pCMV5 

vector (gift from Dr. David Russel, Southwestern Medical Center, Dallas, TX) by 
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inserting a linker containing the DNA sequences for a 3 HA tag at the EcoR1 and MLU1 

sites. 

Cell culture and electroporation-Cells were cultured in Dulbecco’s modified 

Eagle’s medium DMEM supplemented with 10% fetal bovine serum, 50 µg/mL 

streptomycin, and 50 units/mL penicillin (45). For experiments performed in 

preadipocytes, 2.5x106 cells were electroporated with 8 ug of plasmid DNA. The 

electroporation was performed using a Bio-Rad gene pulser II at the setting of 0.18 kV 

and 960 microfarads. Immediately after electroporation, the cells were reseeded into 1 

well of a 6 well plate. For experiments in mature adipocytes, fibroblasts were cultured for 

8 days, differentiated into mature adipocytes by adding differentiation media (2.5 µg/mL 

insulin, 0.25 µM dexamethasone, and 0.5 mM IBMX in the culture media described 

above) for 72 hours, then cultured for an additional 24-48 hours. Adipocytes were then 

electroporated as described above using 5x106 cells and 15ug of plasmid DNA. After 

electroporation, cells were reseeded into 1 well of a 6 well plate. For experiments in 

COS-7 cells, transfection was performed using TransIT-LT1 tranfection reagent 

according to the manufacturers instructions.  

Oil-red-O staining for intracellular triglycerides- To stain neutral lipids, cells 

were first washed with PBS and then fixed in 4% formaldehyde solution in PBS (1 hour). 

After three PBS washes, the cells were stained with oil-red-O solution (5 mg/mL oil 

red O solid dissolved in isopropanol, then diluted to a 60% working solution with ddH20 

and filtered through a 0.45µm filter) for 30 min at room temperature, followed by six 

washes with water. 
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Immunofluorescence- Cells were washed with PBS and fixed in 4% 

paraformaldehyde in PBS (1 hour), then washed three times with PBS, permeabilized 

with 0.05% Triton X-100 in PBS containing 1% FBS (15 min), and incubated overnight 

at 4°C with primary antibody against HA or calreticulin in permeabilization buffer. Cells 

were then washed, labeled with secondary antibody, and washed again with 

permeabilization buffer before mounting on slides using Prolong Gold. 

Confocal microscopy- Images were taken on a Zeiss Axiophot microscope 

equipped with a Hamamatsu digital camera and processed using Metamorph imaging 

software, version 6.1 (Universal Imaging, Downingtown, PA). 

FACS analysis- GFP positive cells were sorted on a BD Biosciences [San Jose, 

CA] FACS Vantage DiVa Cell Sorter.  The acquisition software used was FACS DiVa 

6.0.  

Triglyceride Determination-Cells were transfected as described above and GFP 

positive cells were sorted by FACS. The cells were then lysed with water, sonicated, and 

quantitated for triglyceride using the Triglyceride Determination Kit (Sigma) via the 

manufacturer’s instructions. 

Statistical analysis- Quantitative data is represented as mean ± SEM. For 

statistical analysis the differences between groups were examined with student’s paired t-

test and p value of < 0.05 was considered statistically significant. 
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Results 

The carboxy terminus of human Cidea is necessary and sufficient for lipid droplet 

targeting 

Although the functional domains of many lipid droplet associated proteins have 

been identified (75,76,86,255), analysis of the functional domains of Cidea has not yet 

been performed. In order to answer this question, various domains of human Cidea were 

fused to GFP or HA to identify which segments are required for lipid droplet targeting 

and triglyceride shielding (Figure 3.1).  Since human and mouse Cidea are approximately 

90% homologous, the domains were chosen based on the sequence similarity previously 

described for mouse Cidea to the PAT family protein, perilipin, which is a well-

characterized lipid droplet associated protein (72). These regions also share homology 

with another CIDE family protein that binds lipid droplets, FSP27 (72). The first region 

of Cidea (I) shares approximately 22% homology with perilipin within a short amino 

terminal sequence, which also shares homology with the other PAT family proteins, 

Adipophilin and TIP47. No function has yet been identified for this region, but the shared 

homology among the lipid droplet proteins may indicate an unidentified function for this 

motif. The second region of Cidea (II) shares 51% homology with the amino terminal 

triglyceride-shielding domain of Perilipin. This segment of Perilipin is responsible for 

blocking lipase association with the lipid droplet and preventing lipolysis. Since Cidea 

also inhibits lipolysis, this region is potentially important for Cidea function. The third 

and fourth regions of Cidea (III and IV) share approximately 30% and 48% homology 

with the two regions of Perilipin responsible for lipid droplet targeting and anchoring and  



 89

 

 

 

 

 

 

 

 

 

A.

B. 

22 51 30  48 % Homology: 32 

Amino Acids

0 100 200 300 400 500

I II III IV

Perilipin

FSP27

Cidea

V

Cidea 1-116 aa

Cidea 1-35 aa

Cidea 35-116 aa

Cidea 116-220 aa

GFP-Cidea expression constructs

Cidea 1-116 aa

Cidea 116-220 aa

HA-Cidea expression constructs

Cidea 1-220 aa

I II III IV V

Cidea 1-220 aa

I II III IV V

Figure 3.1. Schematic diagram showing the predicted amino acid similarity of 

Cidea and FSP27 to Perilipin and the Cidea constructs generated based on these 

motifs. A. The adipophilin-like sequence of perilipin (aa 11-38; Region I) shows a 
sequence similarity of 32% with FSP27 (aa 2-29) and 22% with Cidea (aa 2-28). Region 
II of perilipin (aa 120-152) is responsible for shielding triglyceride from cytosolic 
lipases and has a sequence similarity of 40% with FSP27 (aa 46-77) and 51% with 
Cidea (aa 38-69). Regions III (aa 313-352) and IV (aa 365-391) of perilipin are 
responsible for lipid droplet targeting and anchoring and have 40% and 30 % similarity 
with the respective sequences of FSP27 (aa 137-173 and aa 174-200) and 38% and 48% 
similarity with Cidea (aa 122-158 and 159-185). The homology between Cidea and 
Perilipin within each domain is shown. B. Cidea constructs of GFP or HA fused to the 
full length or various fragments of Cidea were generated based on the homology to the 
known perilipin domains.  
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therefore may be required to target Cidea to the lipid droplet (72). Finally, the fifth region 

of Cidea (V) shares 32% homology with the second triglyceride shielding domain found 

in the carboxy terminal portion of Perilipin. The constructs generated include the full 

length protein, the amino terminal 116 amino acids, encompassing regions I and II, or the 

carboxy terminal 104 amino acids, encompassing regions III and IV, fused to either GFP 

or HA. Additionally, in order to further analyze the amino terminal region, GFP 

constructs were also generated to either region I or region II (Figure 3.1). 

Not surprisingly, ectopic expression of the full-length Cidea protein fused to GFP 

in 3T3-L1 adipocytes confirmed that human Cidea targets to lipid droplets similarly to 

mouse Cidea (72). As seen in Figures 3.2 and Supplementary Figure 3.1, Cidea is found 

concentrated around the periphery of lipid droplets stained with oil red, a lipophylic dye 

which binds to neutral lipids, such as triglyceride and cholesterol esters. Conversely, the 

GFP control and three amino terminal constructs show diffuse cytoplasmic and nuclear 

staining, indicating no distinct intracellular localization. However, the carboxy terminal 

construct shows a localization pattern similar to the full-length protein, with ring-like 

labeling surrounding lipid droplets (Figures 3.2 and Supplementary Figure 3.1).   

To ensure that these findings were not an artifact of the GFP tag, the experiments 

were repeated with an HA tag fused to the full length, amino terminus, or carboxy 

terminus of Cidea.  These experiments showed a similar intracellular localization pattern 

for the GFP and HA tagged proteins, indicating that Cidea lipid droplet localization is not 

influenced by the presence of the GFP tag (Supplementary Figure 3.2). Furthermore, 
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these experiments reveal that Cidea targeting to the lipid droplet is solely dependent on 

the carboxy terminus in adipocytes.   

In order to determine if the targeting of human Cidea is an adipocyte specific 

phenomenon, the GFP tagged constructs were expressed in 3T3-L1 fibroblasts and COS-

7 monkey kidney cells. Similar to 3T3-L1 adipocytes, in 3T3-L1 fibroblasts, both the 

full-length protein and carboxy terminus target to lipid droplets, while the GFP control 

and amino terminus show diffuse cytoplasmic and nuclear staining (Figure 3.3). These 

findings suggest that Cidea targeting to lipid droplets is not dependent on a protein 

specifically expressed in adipocytes.  

However, 3T3-L1 fibroblasts are preadipocytes and may express low levels of an 

adipocyte protein that targets Cidea to the lipid droplets. Therefore, Cidea expression was 

also analyzed in the more distinct cell line, COS-7 kidney cells. These experiments again 

show that the GFP control and amino terminus of Cidea do not have a distinct 

localization pattern, but the full-length Cidea and the carboxy terminus of Cidea localize 

to the lipid droplets. However, neither Cidea nor the carboxy terminus shows as tight an 

association with the droplets in COS cells as in adipocytes or preadipocytes. While both 

Cidea and the carboxy terminus show punctate staining in the vicinity of lipid droplets, 

with some colocalization, they do not form the same ring-like structures surrounding the 

lipid droplets, as seen in adipocytes and preadipocytes (Figures 3.4 and Supplementary 

Figure 3.3). This data suggests there may be a protein expressed in adipocytes and 

preadipocytes that enhances Cidea association or prevents Cidea dissociation from the 

lipid droplets. 
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Figure 3.2. The C terminus of Cidea (116-219 amino acids) is necessary 

and sufficient for lipid droplet localization in adipocytes. GFP only or the 
GFP-Cidea constructs were expressed in day 5 adipocytes for 24 hours, the 
cells were then fixed, and the neutral lipid was labeled with oil red O. The left 
two panels show 3D images in either the green and red channels together to 
visualize the Cidea localization to lipid droplets or the green channel only to 
visualize the cellular distribution of Cidea. The right two panels show confocal 
Z sections in either the green and red channels together or the green channel 
only. All images are 100X. 
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Figure 3.3. The C terminus of Cidea (116-219 amino acids) is necessary 

and sufficient for lipid droplet localization in preadipocytes. GFP only or 
the GFP-Cidea constructs were expressed in 3T3-L1 preadipocytes for 24 
hours, the cells were then fixed, and the neutral lipid was labeled with oil red 
O. The left two panels show a 60X confocal Z section of two different cells. 
The right panel shows a 100X confocal Z section for closer inspection of cidea 
localization to the lipid droplet. The images for each construct are from three 
different cells. 
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Cidea and the carboxy terminus of Cidea induce distinct changes in lipid droplet 

morphology 

Interestingly, these experiments in preadipocytes and COS-7 cells also revealed a 

striking change in lipid droplet morphology with overexpression of the full length or 

carboxy terminus of Cidea compared to the GFP control or amino terminus. In cells 

expressing the GFP control or amino terminus, lipid droplets remain small and dispersed 

throughout the cytoplasm. However, in cells expressing the full-length protein, the lipid 

droplets tend to be fewer in number and larger in size, suggesting that Cidea may 

facilitate the fusion of lipid droplets. In cells expressing the carboxy terminus of Cidea, 

the lipid droplets cluster together, but do not form large droplets during the timecourse 

analyzed (Figure 3.4). This clustered morphology has been reported for other lipid 

droplet shielding proteins, such as Perilipin and MLDP, suggesting that the carboxy 

terminus may contain the shielding domain required to inhibit lipase association with the 

droplet (85,256). To determine if the carboxy terminus could induce large lipid droplet 

formation in the presence of the amino terminus, both constructs were expressed together. 

In cells expressing both constructs, lipid droplets were clustered, but not large and few. 

Therefore, dual expression of the amino and carboxy termini together did not result in the 

full length phenotype, suggesting the carboxy terminus is required for the proper 

targeting of the amino terminus for large lipid droplet formation and the amino terminus 

cannot function without the presence of the carboxy terminus (data not shown).  
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Figure 3.4. Cidea changes lipid droplet morphology in COS-7 cells, but does not tightly 

associate with lipid droplets. A. GFP only or the GFP-Cidea constructs were expressed in 

COS-7 for 24 hours in the presence of 400µM oleate, the cells were then fixed, and the 
neutral lipid was labeled with oil red O. The left panel shows a 60X confocal Z section of a 
cell expressing GFP. The right panel shows a 100X confocal Z section for closer inspection of 
cidea localization to the lipid droplet. The images for each construct are from four different 
cells. B. Lipid droplet morphology was determined in 200 cells from three independent 
experiments as being small and dispersed, large and few, or clustered. 
 



 96

To ensure that the morphological changes are not due to the GFP tag, the 

experiments were repeated expressing the proteins fused to an HA tag. These 

experiments resulted in the same phenotype, indicating that the morphological changes 

are not due to the GFP tag (Supplementary Figure 3.4).  Furthermore, even after 72 hours 

of expression, the carboxy terminus did not induce the large and few lipid droplets seen 

with the full-length protein. This data again suggests that the carboxy terminus is required 

to localize Cidea to the lipid droplets, but the amino terminus is required to stimulate 

large lipid droplet formation. 

The C terminus of Cidea is necessary and sufficient to stimulate triglyceride storage 

Multiple lines of evidence indicate that Cidea promotes lipid storage by inhibiting 

lipolysis. To date, all support for this Cidea function has been through loss of function 

studies (79,80). To determine if Cidea overexpression can also stimulate lipid storage, the 

GFP-Cidea constructs were overexpressed in COS-7 cells. The GFP-positive cells were 

then isolated through FACS to determine the triglyceride levels in cells expressing each 

of the constructs. Not surprisingly, overexpression of the amino terminus of Cidea caused 

no significant change in triglyceride level compared to the GFP control. However, both 

the full length and carboxy terminus of Cidea caused a significant increase in triglyceride 

accumulation above the GFP control (an increase of 35% and 27%, respectively).  

Although overexpression of the carboxy terminus causes slightly less triglyceride 

accumulation, this is not statistically different from the full-length protein, suggesting 

that the carboxy terminus of Cidea is necessary and sufficient to inhibit lipolysis and 

promote triglyceride accumulation (Figure 3.5). This data also suggests that while the  
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Figure 3.5. Cidea overexpression causes increased triglyceride 

accumulation. GFP only or the GFP-Cidea constructs were expressed in 

COS-7 for 24 hours in the presence of 400µM oleate and triglyceride 
levels were determined. The triglyceride levels with each condition were 
first normalized to cell number and then expressed as a fold change 
compared to the GFP only control. The values represent the average of 
three experiments. There is no significant difference in triglyceride in 
cells expressing the full length or C terminal domain. The asterisks 
denote a p value < 0.01. 
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amino terminus is required to promote the large lipid droplet formation seen with the full-

length protein, this change in morphology is not required to promote triglyceride 

accumulation. 

Cidea does not localize to the ER 

A recent report claims that Cidea is localized to the ER in mouse brown 

adipocytes and may regulate lipid storage from this intracellular organelle (257). Since 

the ER is believed to be the site of lipid droplet biogenesis and Cidea is found both 

associated and dissociated from the lipid droplets in COS cells, Cidea may actually 

function in the ER rather than lipid droplets (65,68). In order to determine if Cidea 

localizes to the ER in COS cells, GFP-Cidea or the GFP-carboxy terminus were 

overexpressed in COS cells and the ER was labeled with calreticulin, an ER specific 

protein found throughout the smooth and rough ER. These experiments revealed clearly 

distinct labeling between Cidea and the ER, indicating very low, if any, colocalization of 

Cidea with the ER (Figure 3.6). Therefore, Cidea does not appear to function in the ER. 

Discussion 

Currently, published reports suggest that Cidea promotes lipid storage by 

inhibiting lipolysis, but the mechanism driving this function is still unknown (79,80). In 

this study, we show that the overexpression of human Cidea or the carboxy terminal 104 

amino acids induced both lipid droplet targeting and triglyceride accumulation, 

identifying the carboxy terminus as both necessary and sufficient for these two functions.  

Due to the anti-lipolytic role of Cidea, it is not unexpected that its overexpression 

increases triglyceride storage (Figure 3.5). Many studies have shown that inhibiting  
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Figure 3.6. Cidea does not localize to the endoplasmic reticulum. GFP-
Cidea or the GFP-116-219 amino acid construct was expressed in COS-7 for 

24 hours in the presence of 400µM oleate, the cells were then fixed, and the 
endoplasmic reticulum was labeled with calreticulin, shown in the red 
channel. The left panel shows cells expressing full length Cidea and the right 
panel shows cells expressing the C terminus of Cidea. The top three panels 
are confocal Z sections, while the bottom panel is a 3D image. The images 
for each construct are from four different cells. 
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Supplementary Figure 3.1. Zoomed image of the full length or C terminal 

fragment of Cidea localized to lipid droplets in adipocytes.  GFP-full length or 
GFP-C terminal Cidea constructs were expressed in day 5 adipocytes for 24 hours, 
the cells were then fixed, and the neutral lipid was labeled with oil red O. The top 
two panels show Z sections in the green and red channels together to visualize the 
Cidea localization to lipid droplets and the bottom two panels show the green 
channel only to visualize the cellular distribution of Cidea. All images are 100X. 
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Supplementary Figure 3.2. The C terminus of Cidea (116-219 amino 

acids) is necessary and sufficient for lipid droplet localization in 

adipocytes when fused to HA. The HA-Cidea constructs were expressed 
in day 5 adipocytes for 24 hours, the cells were then fixed, and the neutral 
lipid was labeled with oil red O. The left panel shows a confocal Z section 
in either the green and red channels together to visualize the Cidea 
localization to lipid droplets or the green channel only to visualize the 
cellular distribution of Cidea. All images are 100X. 
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Supplementary Figure 3.3. Cidea changes lipid droplet 

morphology in COS-7 cells, but does not tightly associate with lipid 

droplets. A. GFP only or the GFP-Cidea constructs were expressed in 

COS-7 for 24 hours in the presence of 400µM oleate, the cells were 
then fixed, and the neutral lipid was labeled with oil red O. The first 
and third panels show the green and red channels together to visualize 
Cidea localization to lipid droplets and the second and fourth show the 
green channel only to visualize the cellular distribution of Cidea. 
Shown are two different cells for each construct. All images are 100X 
confocal Z sections. 
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Supplementary Figure 3.4. Cidea changes lipid droplet morphology in COS-7 

cells when fused to HA. HA-Cidea constructs were expressed in COS-7 for 24 

hours in the presence of 400µM oleate, the cells were then fixed, and the neutral 
lipid was labeled with oil red O. The images for each construct are from three 
different cells. All images are 100X. 
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lipolysis by various means stimulates triglyceride accumulation. For example, depletion 

of ATGL expression with siRNA inhibits lipolysis resulting in increased triglyceride 

storage (258,259). Conversely, overexpression of shielding proteins, such as Perilipin, 

ADRP, or MLDP, also increases triglyceride storage (86,256,260,261). Another protein 

of the CIDE family, FSP27, binds lipid droplets and negatively regulates lipolysis 

(71,254). This protein is 65% homologous to Cidea and the two proteins show a similar 

phenotype when depleted or overexpressed. Interestingly, overexpression of FSP27 in 

3T3-L1 preadipocytes increases triglyceride storage to a similar extent as Cidea 

overexpression, suggesting these two proteins may have redundant functions (73).  

While Cidea clearly has a role in blocking lipolysis, it is also possible that it 

promotes triglyceride storage by enhancing synthesis. Although it has not been directly 

tested with Cidea, it has been shown that FSP27 does not promote triglyceride synthesis. 

Since Cidea and FSP27 are very similar, most likely Cidea also stimulates lipid storage 

through lipase inhibition rather than triglyceride synthesis (258). 

It is not surprising the carboxy terminus of Cidea is responsible for both lipid 

droplet localization and triglyceride accumulation, since this region of Cidea shares 

sequence similarity to the carboxy terminal triglyceride shielding domain as well as to the 

targeting and anchoring domains of Perilipin (Figure 3.1) (75,86). Yet, we cannot 

conclude that these regions of Cidea are responsible for the targeting and anchoring to 

lipid droplets and triglyceride shielding without doing further analysis. 

Despite the presence of a homologous motif in the amino terminus of Cidea to the 

amino terminal triglyceride shielding domain of Perilipin, this region is not required for 
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lipid droplet targeting or triglyceride accumulation (86). Nevertheless, the amino 

terminus is required to induce large lipid droplet formation and reduce lipid droplet 

number, which was not seen with the overexpression of the carboxy terminus alone, 

indicating that both termini are required for this function (Figure 3.4).  Although further 

studies are required to determine if this morphological change is due to lipid droplet 

fusion, it is a likely possibility. Since lipid droplets can occupy much of the intracellular 

volume, especially in adipocytes, storing the lipids in few rather than several droplets 

would allow more cytoplasmic space for other cellular processes to occur. Since the 

adipocyte needs to maximize its triglyceride storage capacity, especially in response to 

increased fatty acid levels, this change in lipid droplet morphology could be very 

beneficial to the adipocyte. Interestingly, this change in lipid droplet morphology has not 

yet been reported for any other canonical lipid droplet associated protein and identifies a 

novel function for this class of proteins. 

 Due to the change in lipid droplet morphology, it was surprising that cells 

expressing full-length Cidea did not accumulate more triglyceride than cells expressing 

the carboxy terminus (Figure 3.5). Since a large droplet has less surface area to undergo 

lipolytic attack than a small droplet, forming larger droplets could reduce lipolysis and 

increase lipid storage. Experimental limitations may explain the lack in differences seen 

in triglyceride accumulation. For example, the experiments in this study were performed 

for 24 hours, since this timepoint yielded the optimal parameters for analysis: the cells 

had adequate GFP-Cidea expression, showed a phenotype, and are still healthy; longer 

timepoints result in increased cell toxicity. However, 24 hours may not be sufficient time 
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for the large lipid droplets to form and lipids to accumulate to a significant degree above 

the anti-lipolytic carboxy terminus. Perhaps if the experiments were carried out longer 

than 24 hours, a greater difference in triglyceride levels would be found between cells 

expressing the full-length and the carboxy terminal protein. 

  These studies outline the mechanism in which human Cidea regulates lipid 

storage and may be an important aspect in the maintenance of human adipocyte function 

and glucose homeostasis. This is because a number of studies in humans suggest that 

Cidea may have a beneficial role in regulating whole body insulin sensitivity. For 

instance, Puri et al showed a positive correlation of Cidea expression and insulin 

sensitivity in obese humans matched for BMI (72). Additionally, Nordstrom et al showed 

a positive correlation of Cidea expression in lean insulin sensitive patients compared to 

obese insulin resistant patients and an increase in Cidea expression in obese patients that 

had undergone bariatric surgery versus patients that did not have surgery. Since bariatric 

surgery increased insulin sensitivity in the obese patients, Cidea expression again 

correlates with increased insulin sensivity (79).  

Perhaps Cidea regulates insulin sensitivity by controlling the rate of lipolysis in 

the adipose tissue and properly sequestering fatty acids as triglyceride within lipid 

droplets. This function would be particularly important during the obese state to prevent 

the elevation of free fatty acid levels in the serum, which would then accumulate in the 

liver and muscle, causing lipotoxicity and insulin resistance (4). Therefore, it is of 

extreme importance to continue these mechanistic studies into understanding Cidea 
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function to further our understanding of adipocyte biology and develop novel therapies 

for diseases, such type 2 diabetes.   

 

Limitations and Future Perspectives 

These studies provide mechanistic insight into the ability of Cidea to induce lipid 

storage by identifying the carboxy terminus as being both necessary and sufficient for 

lipid droplet targeting and triglyceride accumulation. Additionally, a novel function for 

Cidea was revealed in that it promotes a dramatic change in lipid droplet morphology: the 

formation of large and few lipid droplets from small and dispersed lipid droplets, 

suggesting that lipid droplet fusion may be occurring. However, many questions remain 

regarding the mechanism behind these findings.  

For example, the carboxy terminus is equally efficient to the full-length protein in 

stimulating triglyceride accumulation within 24 hours. However, if the experiment were 

carried out for a longer time period, the full-length protein may induce significantly more 

triglyceride accumulation than the carboxy terminus. The triglyceride determination 

assay was performed at 24 hours because longer timepoints resulted in significant cell 

toxicity due to excessive GFP expression. Since these experiments require the use of a 

GFP tag to allow the sorting of cells expressing Cidea, they could only be performed for 

24 hours. Perhaps expressing the constructs from a less efficient promoter would prevent 

reaching a toxic level of transcript too quickly by enabling a low rate of transcript 

expression, permitting a longer experimental duration. If the larger lipid droplets cause 

only a small reduction in lipolysis due to the reduced surface area accessible to lipases, it 
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might take longer than 24 hours to see a significant enhancement in triglyceride 

accumulation with the full-length protein. Therefore, any differences in triglyceride 

storage may require using a construct with a less efficient promoter to allow a longer 

experimental timecourse. 

Although it seems unlikely that Cidea is promoting lipid storage by increasing 

triglcyeride synthesis, this is still a formal possibility and needs to be ruled out. 

Therefore, this could be accomplished using radiolabeled oleate and determining if the 

rate of oleate incorporation into triglyceride increases with Cidea overexpression. 

Within the timecourse tested, it is evident that the carboxy terminus is required for 

lipid droplet localization, but the amino terminus is required for the formation of larger 

and fewer lipid droplets. However, it is not clear which region of the amino terminus 

holds this function. It would be interesting to generate GFP constructs expressing the 

carboxy terminus fused to various regions of the amino terminus to determine which 

motif facilitates the large lipid droplet formation. Likewise, it would be interesting to 

identify which region of the carboxy terminus is responsible for both the lipid droplet 

targeting and triglyceride storage. This could be accomplished by generating GFP 

constructs expressing various truncations of the carboxy terminus to determine which 

motifs are required for each function. 

Additionally, it is important to determine if Cidea requires interaction with 

another protein to bind lipid droplets. This could be accomplished by overexpressing HA-

Cidea and the HA-carboxy terminus and immunoprecipitating Cidea to identify the 

bound proteins by mass spectrometric analysis. The proteins that are bound to both the 
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full length and the carboxy terminus would be the candidates for targeting Cidea to lipid 

droplets. These proteins could then be depleted using siRNA to determine if GFP-Cidea 

localization to lipid droplets is inhibited. 

Another important experiment that should be performed is to monitor the changes 

in gene expression with Cidea overexpression. Perhaps the changes in lipid droplet 

morphology are not directly due to Cidea, but rather a gene induced by Cidea 

overexpression. Since PPARγ, SREBP1, and LXR are known to promote lipid storage, 

genes regulated by these transcription factors could first be monitored for expression 

changes (262,263). Additionally, coexpression of a reporter plasmid for each of these 

transcription factors could also be used to monitor activity. An aggressive approach 

would be to do gene chip analysis to determine global changes in gene expression with 

Cidea overexpression. 

Unfortunately, Cidea is not expressed in cultured human adipocytes or in mouse 

white adipose tissue. Therefore, it is very difficult to study the in vivo role of Cidea in the 

white adipose tissue. However, it may be possible to perform the overexpression studies 

in cultured human adipocytes to determine if Cidea behaves similarly in cultured primary 

human adipocytes as it does in 3T3-L1 adipocytes, preadipocytes, and COS cells. 

Additionally, perhaps rosiglitazone treatment increases Cidea expression in cultured 

human adipocytes and promotes lipid storage. If this is the case, then Cidea could be 

depleted using siRNA to determine if it is necessary for rosiglitazone induced triglyceride 

storage. These experiments would give additional insight into how Cidea mediates the 
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beneficial effects of PPARγ activation and provide a basis for better understanding the 

role of Cidea in regulating adipocyte function and whole body insulin sensitivity.  

Chapter IV: Discussion 

 The adipose tissue functions as a regulator of whole body insulin sensitivity by 

safely storing excess fatty acid as triglyceride to prevent the accumulation of lipid in 

peripheral tissues, such as the liver and muscle, and by secreting factors called adipokines 

that enhance peripheral insulin sensitivity (4,6). Both of these important processes are 

absolutely dependent on the expression and activity of the nuclear receptor, PPARγ 

(6,203,264). This transcription factor is the master driver of adipogenesis and regulator of 

adipocyte gene expression in fully differentiated cells (98,203). Loss in function of 

PPARγ will result in a complete inhibition of the adipogenic process as well as decrease 

the ability of fully differentiated cells to store fatty acids as triglyceride and secrete 

insulin-sensitizing adipokines. Therefore, a loss in PPARγ function will result in serious 

metabolic disorders, such as insulin resistance and type 2 diabetes. 

Regulation of PPARγγγγ expression by SCD2 

 Due to the powerful regulation that PPARγ exerts on whole body energy 

metabolism, it is essential to understand the endogenous mechanisms that control PPARγ 

expression, activity, and function. In the first part of this thesis a novel and powerful 

regulator of PPARγ expression was identified in adipocytes. These studies revealed that 

the fatty acid ∆9 desaturase, Stearoyl CoA Desaturase 2 (SCD2) is required for PPARγ 

protein synthesis and therefore expression and function. Since SCD2 is required for 

PPARγ expression, loss in SCD2 expression inhibited adipogenesis and decreased 
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adipocyte gene expression. Although the phenotype resulting from the depletion of SCD2 

may not be specifically due to the loss in PPARγ, this could fully explain the loss in 

adipocyte gene expression.  

Since SCD2 is required to maintain general protein synthesis, these findings 

illustrate a novel role for endogenous fatty acid desaturation in adipocytes. Fatty acids are 

continually being recognized as powerful signaling molecules and the adipocyte has the 

potential to regulate many of its cellular processes through lipid signaling intermediates. 

Although it is not known whether SCD2 controls translation through the production of a 

desaturated fatty acid, it is interesting that the adipocyte, a cell that is specialized for the 

metabolism of fatty acids, controls the essential function of protein synthesis by a fat 

metabolizing enzyme.  

Perhaps this is a mechanism for the adipocyte to communicate with the external 

environment. The saturated fatty acid, palmitate, is one of the most abundant free fatty 

acids present in the diet as well as in cellular membranes and triglyceride stores. 

Additionally, many membrane proteins are postranslationally palmitoylated, which may 

allow the proper folding of proteins in the endoplasmic reticulum, export from the Golgi, 

ability to assemble into protein platforms, acquire signaling capacity, or be endocytosed 

and sorted in the endocytic pathway (265). Therefore, palmitate has an immense effect on 

maintaining basic cellular functions. Interestingly, palmitate is a very efficient substrate 

of SCD2 (227). Thus, perhaps SCD2 functions as an indicator of palmitate levels in the 

adipocyte; when palmitate levels are low, SCD2 signals to the translational machinery to 
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slow protein synthesis and vice versa. This would prevent the synthesis of proteins that 

would not fold or function correctly. 

 Surprisingly, the highly homologous protein SCD1 does not regulate protein 

synthesis in the adipocyte. Finding this functional difference between the two SCD 

isoforms was unexpected because the proteins share 80% amino acid homology, are both 

present in the endoplasmic reticulum, and were both reported to utilize the same 

substrates with the same efficiency (227,229,232,233). Perhaps SCD1 and SCD2 

associate with different proteins in the ER, which channels their products into different 

metabolic or signaling pathways. For example, the two isoforms may generate the same 

unsaturated fatty acid products, but the products of SCD2 are further metabolized in 

separate pathways from the products of SCD1. Although not much is known about the 

proteins associated with SCD2, enzymes involved in triglyceride synthesis have been 

shown to localize with SCD1 in the ER (266). Considering that most triglyceride 

molecules contain at least one unsaturated fatty acid moiety and the SCD1 knockout 

mouse has significantly reduced triglyceride levels, perhaps SCD1 channels fatty acids 

into triglyceride synthesis, whereas SCD2 channels fatty acids into other biosynthetic 

pathways, such as membrane and protein synthesis (229,235,267). 

 Since the discovery that SCD1 is a major driver of triglyceride synthesis, it has 

been a primary target for controlling obesity. Interestingly, mice have four highly 

homologous SCD isoforms, whereas humans have two SCD isoforms, showing 

approximately 80% and 60% homology (hSCD1 and hSCD5, respectively) to the mouse 

isoforms (229-231). Prior to the findings reported in this study, there was no data 



 113

regarding separate cellular functions among the mouse SCD isoforms. Given that human 

SCD1 is equally homologous to all four mouse isoforms, it may be that the human SCD1 

shares functional homology to all four mouse desaturases. Therefore, SCD1 depletion in 

human adipocytes may provide insight into the function of this isoform and further 

understand its implications as an obesity target in humans. 

Cidea regulation of triglyceride storage 

Effective diabetic therapies currently on the market are the synthetic PPARγ 

agonists, called thiazolidinediones. These drugs improve glucose tolerance and serum 

lipid levels in diabetic patients, which is thought to be partially due to shifting lipid 

storage from peripheral tissues back into the adipose tissue by increasing triglyceride 

synthesis and storage in the adipocyte (193,194,268). This would relieve the liver and 

muscle from lipid overload and restore insulin sensitivity in these tissues. Interestingly, 

Cidea expression is highly regulated by PPARγ and thiazolidinedione treatment in mice 

induces a dramatic increase in Cidea expression (72). Since Cidea inhibits lipolysis in 

both mouse and human adipocytes, it may have a key role in regulating the beneficial 

effects of thiazolidinedione treatment in human diabetic patients by promoting lipid 

storage in the adipose tissue (79,80).  

Previous findings from our lab identified Cidea as a lipid droplet associated 

protein in the mouse, suggesting that Cidea may promote lipid storage by binding to the 

lipid droplet and blocking lipase activity, thereby inhibiting lipolysis (72). However, prior 

to the findings reported in this study, nothing was known regarding the mechanism of 

Cidea association with lipid droplets and regulation of lipid storage. In this study, we 
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identified the carboxy 104 amino acids as being necessary and sufficient for lipid droplet 

binding and stimulation of triglyceride accumulation. This finding provides mechanistic 

detail into Cidea function and provides a basis for future studies in further defining this 

important aspect of adipocyte biology. 

Interestingly, another member of the CIDE family, Cideb, was also recently 

described as targeting lipid droplets in the liver via the carboxy terminal amino acids 166-

195 (255). Cidea and Cideb share approximately 62% amino acid homology and the 

corresponding region of Cidea to the lipid droplet targeting region of Cideb is predicted 

to also facilitate lipid droplet targeting based on homology to perilipin. In the liver, Cideb 

appears to be required for the assembly of triglyceride containing VLDL particles. This 

process requires the carboxy terminus to bind lipid droplets and the amino terminus to 

induce VLDL assembly and secretion (255). Reminiscent of these findings with Cideb 

were the findings in the present study regarding Cidea function. While the carboxy 

terminus of Cidea is necessary and sufficient for lipid droplet localization and triglyceride 

storage, the amino terminus is also required for a previously unrecognized function of 

Cidea: to form larger and fewer droplets from smaller, dispersed droplets. This change in 

lipid droplet morphology suggests that fusion of the lipid droplets may be occurring. 

Lipid droplet fusion has been reported to occur in muscle via the SNARE proteins, 

SNAP23, syntaxin 5, and VAMP4 (252). However, none of the canonical lipid droplet 

associated proteins of the PAT family or CIDE family have been reported to facilitate 

lipid droplet fusion. While these findings do not verify that fusion of the droplets is 

occurring, it is a likely possibility. Regardless of process causing the phenotype, Cidea is 
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causing a morphological change in lipid droplets and this change denotes a functional 

domain in the amino terminus.  

 Perhaps the formation of larger and fewer droplets allows large amounts of lipid 

to be stored efficiently in the intracellular environment. Supporting this idea is that under 

non-lipolytic conditions, primary adipocytes have unilocular droplets versus multilocular 

droplets. Formation of this large droplet may occur when the lipid droplets increase in 

size to the point of contact or it may occur through the facilitated trafficking and fusion 

via proteins, such as Cidea. Interestingly, another protein of the CIDE family, FSP27, 

may also regulate unilocular lipid droplet formation since the FSP27 knockout mice have 

multilocular droplets in the white adipose tissue (254).  However, the multilocular droplet 

formation may also be due to increased lipolysis with FSP27 depletion, since lipolytic 

stimuli induces the same phenotype (269,270). One of the questions in the field is does a 

large lipid droplet reduce the efficiency of lipolysis by reducing the surface area 

accessible to lipases? Likewise, does the multilocular morphology result from lipolytic 

attack and breakdown of the lipid droplet core or is it a process induced to facilitate 

increased lipolytic efficiency. Since the carboxy terminus of Cidea is able to shield the 

lipid droplet, but not induce large lipid droplet formation, analysis of the lipolytic rates in 

cells expressing the carboxy terminus or full length protein may be a tool to answering 

these questions. 

Many details remain to be discovered regarding lipid droplet biology and the 

impact these newly discovered organelles have on cellular functions. It is clear that 

dysregulated triglyceride storage in the adipocyte has detrimental consequences on whole 
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body energy metabolism and glucose homeostasis. Therefore, understanding the 

regulation of these dynamic intracellular storage sites is pertinent to understanding 

metabolic diseases, such as type 2 diabetes. 

Appendix 

 
Additional Experiments not discussed 

 

1. Repeated siRNA knockdowns of EPHX1, EPHX2, NOS, CYP2F2, ELOVL 1,3,5, 
and 6 (alone and in combination) during differentiation of 3T3-L1 cells; No effect 

on PPARγ, Glut4, or PEPCK mRNA by real time PCR with any siRNA treatment. 
 
2. Depleted SCD1 and SCD2 in fully differentiated adipocytes in the presence or 

absence of rosiglitazone; Partial restoration of PEPCK mRNA in SCD2 depleted 
cells with rosiglitazone treatment. 

 
3. Depleted SCD2 in NIH-3T3 cells and monitored mRNA and protein of IRS1 and 

PTEN; IRS1 mRNA did not change, but protein decreased; PTEN protein did not 
change.  

 

4. Monitored PPARγ mRNA in adipocytes with actinomycin treatment and found no 
change in mRNA half life with SCD2 depletion (mRNA half life ~ 2hours). 

 
5. Treated preadipocytes with the differentiation media or a lipid extract from the 

media of differentiating cells, in the presence or absence of SCD2 depletion, to 

determine if SCD2 depletion affected PPARγ ligand production (ligand reported 
to be secreted in the media during differentiation); control media (never exposed 
to cells) also induced differentiation (presumably extracting IBMX) and found no 
difference in differentiation with media from SCD2 depleted cells. 
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