44 research outputs found

    Evolution of Optoelectronic and Texture Properties

    Get PDF
    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (ÎČ-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work- function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≀60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides

    C8‐BTBT‐C8 Thin‐Film Transistors Based on Micro‐Contact Printed PEDOT:PSS/MWCNT Electrodes

    Get PDF
    Advances in organic materials manufacturing have enabled the creation of electronic devices using solution‐processing techniques by employing soluble materials with high conductivity grade. In this exploratory study, the use of micro‐contact for poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer ink deposition as high‐quality structured electrodes for organic field‐effect transistors (OFETs) in top‐contact geometry is demonstrated. The optimized OFET's solution‐processed fabrication is a promising strategy to be realized in the simple, cost‐effective roll‐to‐roll manufacturing processes. The electrical performance of the fabricated devices is comparable to transistors with gold electrodes prepared via vacuum deposition, and even exceeding the values of the charge carriers’ mobilities and featuring lower contact resistance (Rc), due to lower charge‐carrier injection barrier for carbon‐based organic electrodes. An addition of multi‐walled carbon nanotubes to the PEDOT:PSS decreases Rc even further, changing the work function for better energy alignment with semiconductor materials

    Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis

    Get PDF
    Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, “the” actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient’s serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease

    Author Correction: Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis

    Get PDF
    Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, “the” actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient’s serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease

    Measurement of the Bending Strength of Vapor-Liquid-Solid Grown Silicon Nanowires

    Get PDF
    The fracture strength of silicon nanowires grown on a [111] silicon substrate by the vapor-liquid-solid process was measured. The nanowires, with diameters between 100 and 200 nm and a typical length of 2 Όm, were subjected to bending tests using an atomic force microscopy setup inside a scanning electron microscope. The average strength calculated from the maximum nanowire deflection before fracture was around 12 GPa, which is 6% of the Young's modulus of silicon along the nanowire direction. This value is close to the theoretical fracture strength, which indicates that surface or volume defects, if present, play only a minor role in fracture initiation. © 2006 American Chemical Society

    Silicon Nanowire Sensors Enable Diagnosis of Patients via Exhaled Breath

    Get PDF
    Two of the biggest challenges in medicine today are the need to detect diseases in a noninvasive manner and to differentiate between patients using a single diagnostic tool. The current study targets these two challenges by developing a molecularly modified silicon nanowire field effect transistor (SiNW FET) and showing its use in the detection and classification of many disease breathprints (lung cancer, gastric cancer, asthma, and chronic obstructive pulmonary disease). The fabricated SiNW FETs are characterized and optimized based on a training set that correlate their sensitivity and selectivity toward volatile organic compounds (VOCs) linked with the various disease breathprints. The best sensors obtained in the training set are then examined under real-world clinical conditions, using breath samples from 374 subjects. Analysis of the clinical samples show that the optimized SiNW FETs can detect and discriminate between almost all binary comparisons of the diseases under examination with >80% accuracy. Overall, this approach has the potential to support detection of many diseases in a direct harmless way, which can reassure patients and prevent numerous unpleasant investigations

    Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research

    Get PDF
    Microplastic research is a rapidly developing field, with urgent needs for high throughput and automated analysis techniques. We conducted a review covering image analysis from optical microscopy, scanning electron microscopy, fluorescence microscopy, and spectral analysis from Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, pyrolysis gas–chromatography mass–spectrometry, and energy dispersive X-ray spectroscopy. These techniques were commonly used to collect, process, and interpret data from microplastic samples. This review outlined and critiques current approaches for analysis steps in image processing (color, thresholding, particle quantification), spectral processing (background and baseline subtraction, smoothing and noise reduction, data transformation), image classification (reference libraries, morphology, color, and fluorescence intensity), and spectral classification (reference libraries, matching procedures, and best practices for developing in-house reference tools). We highlighted opportunities to advance microplastic data analysis and interpretation by (i) quantifying colors, shapes, sizes, and surface topologies with image analysis software, (ii) identifying threshold values of particle characteristics in images that distinguish plastic particles from other particles, (iii) advancing spectral processing and classification routines, (iv) creating and sharing robust spectral libraries, (v) conducting double blind and negative controls, (vi) sharing raw data and analysis code, and (vii) leveraging readily available data to develop machine learning classification models. We identified analytical needs that we could fill and developed supplementary information for a reference library of plastic images and spectra, a tutorial for basic image analysis, and a code to download images from peer reviewed literature. Our major findings were that research on microplastics was progressing toward the use of multiple analytical methods and increasingly incorporating chemical classification. We suggest that new and repurposed methods need to be developed for high throughput screening using a diversity of approaches and highlight machine learning as one potential avenue toward this capability

    Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics

    Get PDF
    Microplastics are of major concerns for society and is currently in the focus of legislators and administrations. A small number of measures to reduce or remove primary sources of microplastics to the environment are currently coming into effect. At the moment, they have not yet tackled important topics such as food safety. However, recent developments such as the 2018 bill in California are requesting the analysis of microplastics in drinking water by standardized operational protocols. Administrations and analytical labs are facing an emerging field of methods for sampling, extraction, and analysis of microplastics, which complicate the establishment of standardized operational protocols. In this review, the state of the currently applied identification and quantification tools for microplastics are evaluated providing a harmonized guideline for future standardized operational protocols to cover these types of bills. The main focus is on the naked eye detection, general optical microscopy, the application of dye staining, flow cytometry, Fourier transform infrared spectroscopy (FT-Ir) and microscopy, Raman spectroscopy and microscopy, thermal degradation by pyrolysis–gas chromatography–mass spectrometry (py-GC-MS) as well as thermo-extraction and desorption gas chromatography–mass spectrometry (TED-GC-MS). Additional techniques are highlighted as well as the combined application of the analytical techniques suggested. An outlook is given on the emerging aspect of nanoplastic analysis. In all cases, the methods were screened for limitations, field work abilities and, if possible, estimated costs and summarized into a recommendation for a workflow covering the demands of society, legislation, and administration in cost efficient but still detailed manner
    corecore