176 research outputs found

    Modelling phenotypes, variants and pathomechanisms of syndromic diseases in different systems.

    Get PDF
    In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems. Models discussed include budding yeast, the nematode worm, the fruit fly, the frog, zebrafish, mice and human cell-based systems

    Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster

    Get PDF
    Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities

    Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome.

    Get PDF
    Background Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. Materials and Methods In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 - Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing. Results QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. -4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. -7.5 ± 1.7 ms, p = 0.003). Conclusion Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical "QTc at rest" was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS

    Parkes Weber Syndrome: Contribution of the Genotype to the Diagnosis

    Get PDF
    Objectives: Parkes Weber syndrome (PWS) is a rare disorder that combines overgrowth, capillary malformations, and arteriovenous malformations (AVM)/arteriovenous fistulas, for which underlying activating mutations in the ras/mitogen-activated protein kinase/extracellular-signal-regulated kinase signaling pathway have been described. The clinical overlap with Klippel-Trenauny syndrome, associated with mutations in PIK3CA, is significant. This case series aimed to elaborate on the phenotypic description of PWS, to underline its clinical overlap with Klippel-Trenauny syndrome and nonsyndromic AVM, and to evaluate the contribution of genotypic characterization to the diagnosis. Methods: All patients diagnosed with PWS upon enrollment in the Bernese VAScular COngenital Malformations (VASCOM) cohort were included. The diagnostic criteria of PWS were retrospectively reviewed. A next-generation sequencing (NGS) gene panel (TSO500, Illumina) was used on tissue biopsy samples. Results: Overall, 10/559 patients of the VAScular COngenital Malformations cohort were initially diagnosed with PWS. Three patients were reclassified as nonsyndromic AVM (Kristen Rat Sarcoma Viral oncogene homolog [KRAS], KRAS+tumor protein p53, and protein tyrosine phosphatase non-receptor type 11). Finally, 7 patients fulfilled all clinical diagnostic criteria of PWS. Genetic testing was available in 5 PWS patients. Only 1 patient had the classic RASA1 mutation; another patient had mutations in G protein subunit alpha q (GNAQ) and phosphatase and tensin homolog. In a third case, a PIK3CA mutation was detected. In 2 patients, no mutations were identified. Conclusion: Overgrowth syndromes with vascular malformations are rare and their clinical overlap hampers the classification of individual phenotypes under specific syndrome labels, sometimes even despite genetic testing. To provide optimal patient care, an accurate phenotypic description combined with the identification of molecular targets for precision medicine may be more meaningful than the syndrome classification itself

    Transcriptional repressor ZEB2 promotes terminal differentiation of CD8⁺ effector and memory T cell populations during infection

    Get PDF
    ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells

    Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants

    Get PDF
    Background Tetralogy of Fallot (TOF) is common in individuals with hemizygous deletions of chromosome 22q11.2 that remove the cardiac transcription factor TBX1.Objective To assess the contribution of common and rare TBX1 genetic variants to TOF.Design Rare TBX1 variants were sought by resequencing coding exons and splice-site boundaries. Common TBX1 variants were investigated by genotyping 20 haplotype-tagging SNPs capturing all the common variations present at the locus. Association analysis was performed using the program UNPHASED.Patients TBX1 exons were sequenced in 93 patients with non-syndromic TOF. Single nucleotide polymorphism analysis was performed in 356 patients with TOF, their parents and healthy controls.Results Three novel variants not present in 1000 chromosomes from healthy ethnically matched controls were identified. One of these variants, an in-frame 57 base-pair deletion in the third exon which removed 19 evolutionarily conserved residues, decreased transcriptional activity by 40% in a dual luciferase assay (p=0.008). Protein expression studies demonstrated that this mutation affected TBX1 protein stability. After correction for multiple comparisons, no significant associations between common genetic variants and TOF susceptibility were found.Conclusion This study demonstrates that rare TBX1 variants with functional consequences are present in a small proportion of non-syndromic TOF

    Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome

    Get PDF
    Background: Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase involved in mitochondrial oxidative phosphorylation (OXPHOS) and programmed cell death. Methods: We characterized the X-chromosomal abnormality encompassing HCCS or an intragenic mutation in this gene in six new female patients with an MLS phenotype by cytogenetic analysis, fluorescence in situ hybridization, sequencing, and quantitative real-time PCR. The X chromosome inactivation (XCI) pattern was determined and clinical data of the patients were reviewed. Results: Two terminal Xp deletions of ≥11.2 Mb, two submicroscopic copy number losses, one of ~850 kb and one of ≥3 Mb, all covering HCCS, 1 nonsense, and one mosaic 2-bp deletion in HCCS are reported. All females had a completely (>98:2) or slightly skewed (82:18) XCI pattern. The most consistent clinical features were microphthalmia/anophthalmia and sclerocornea/corneal opacity in all patients and congenital linear skin defects in 4/6. Additional manifestations included various ocular anomalies, cardiac defects, brain imaging abnormalities, microcephaly, postnatal growth retardation, and facial dysmorphism. However, no obvious clinical sign was observed in three female carriers who were relatives of one patient. Conclusion: Our findings showed a wide phenotypic spectrum ranging from asymptomatic females with an HCCS mutation to patients with a neonatal lethal MLS form. Somatic mosaicism and the different ability of embryonic cells to cope with an OXPHOS defect and/or enhanced cell death upon HCCS deficiency likely underlie the great variability in phenotypes

    Dissecting TSC2-mutated renal and hepatic angiomyolipomas in an individual with ARID1B-associated intellectual disability

    Get PDF
    Background Several subunits of the SWI/SNF chromatin remodeling complex are implicated in both cancer and neurodevelopmental disorders (NDD). Though there is no clinical evidence for an increased tumor risk in individuals with NDDs due to germline mutations in most of these genes so far, this has been repeatedly proposed and discussed. A young woman with NDD due to a de novo mutation in ARID1B now presented with a large renal (> 19 cm in diameter) and multiple hepatic angiomyolipomas (AMLs) but no other signs of tuberous sclerosis complex. Methods We analyzed tumor and healthy tissue samples with exome and panel sequencing. Results Additionally to the previously known, germline ARID1B variant we identified a post-zygotic truncating TSC2 variant in both renal and hepatic AMLs but not in any of the healthy tissues. We did not detect any further, obvious tumor driver events. The identification of a passenger variant in SIPA1L3 in both AMLs points to a common clonal origin. Metastasis of the renal AML into the liver is unlikely on the basis of discordant histopathological features. Our findings therefore point to very low-grade mosaicism for the TSC2 variant, possibly in a yet unknown mesenchymal precursor cell that expanded clonally during tumor development. A possible contribution of the germline ARID1B variant to the tumorigenesis remains unclear but cannot be excluded given the absence of any other evident tumor drivers in the AMLs. Conclusion This unique case highlights the blurred line between tumor genetics and post-zygotic events that can complicate exact molecular diagnoses in patients with rare manifestations. It also demonstrates the relevance of multiple disorders in a single individual, the challenges of detecting low-grade mosaicisms, and the importance of proper diagnosis for treatment and surveillance

    Comprehensive genotype–phenotype analysis in 230 patients with tetralogy of Fallot

    Get PDF
    Background Tetralogy of Fallot (ToF), the most frequent cyanotic congenital heart disease, is associated with a wide range of intra- and extracardiac phenotypes. In order to get further insight into genotype–phenotype correlation, a large cohort of 230 unselected patients with ToF was comprehensively investigated. Methods and results 230 patients with ToF were studied by karyotyping, comprehensive 22q11.2 deletion testing and sequencing of TBX1, NKX2.5 and JAG1, as well as molecular karyotyping in selected patients. Pathogenic genetic aberrations were found in 42 patients (18%), with 22q11.2 deletion as the most common diagnosis (7.4%), followed by trisomy 21 (5.2%) and other chromosomal aberrations or submicroscopic copy number changes (3%). Mutations in JAG1 were detected in three patients with Alagille syndrome (1.3%), while NKX2.5 mutations were seen in two patients with non-syndromic ToF (0.9%). One patient showed a recurrent polyalanine stretch elongation within TBX1 which represents a true mutation resulting in loss of transcriptional activity due to cytoplasmatic protein aggregation. Conclusion This study shows that 22q11.2 deletion represents the most common known cause of ToF, and that the associated cardiac phenotype is distinct for obstruction of the proximal pulmonary artery, hypoplastic central pulmonary arteries and subclavian artery anomalies. Atrioventricular septal defect associated with ToF is very suggestive of trisomy 21 and almost excludes 22q11.2 deletion. We report a further patient with a recurrent polyalanine stretch elongation within TBX1 and for the first time link TBX1 cytoplasmatic protein aggregation to congenital heart defects

    SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland.

    Get PDF
    Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows. This includes extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUSs) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of the standards used to describe genetic variants and the associated phenotypes when searching for relevant information to support clinical decision making. To address this, all five Swiss academic institutions for Medical Genetics joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its aim is to provide a protected environment for expert evidence sharing about individual variants to harmonize and upscale their significance interpretation at the clinical grade according to international standards. To corroborate the clinical assessment, the variant-related data will be combined with consented high-quality clinical information. Broader visibility will be achieved by interfacing with international databases, thus supporting global initiatives in personalized healthcare
    corecore