14 research outputs found

    Enabling large-scale hydrogen storage in porous media – the scientific challenges

    Get PDF
    Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future, it must be stored in porous geological formations, such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply, decouple energy generation from demand and decarbonise heating and transport, supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP, the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here, the safety and economic impacts triggered by poorly understood key processes are identified, such as the formation of corrosive hydrogen sulfide gas, hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle, from site selection to storage site operation. Multidisciplinary research, including reservoir engineering, chemistry, geology and microbiology, more complex than required for CH4 or CO2 storage is required in order to implement the safe, efficient and much needed large-scale commercial deployment of UHSP.This work was stimulated by the GEO*8 Workshop on “Hydrogen Storage in Porous Media”, November 2019 at the GFZ in Potsdam (Germany). NH, AH, ET, KE, MW and SH are funded by the Engineering and Physical Sciences Research Council (EPSRC) funded research project “HyStorPor” (grant number EP/S027815/1). JA is funded by the Spanish MICINN (Juan de la Cierva fellowship-IJC2018-036074-I). JM is co-funded by EU INTERREG V project RES-TMO (Ref: 4726 / 6.3). COH acknowledges funding by the Federal Ministry of Education and Research (BMBF, Germany) in the context of project H2_ReacT (03G0870C).Peer reviewe

    Carbonate recrystallisation and organic matter maturation in heat-affected sediments from the Shaban Deep, Red Sea

    Get PDF
    Parasound profiles across the Shaban Deep in the Red Sea indicate turbiditic transport of surface sediments from the topographic hight (basalt ridge) into the interior of the deep. This is supported by petrographical and (isotope-) geochemical evidence in the East Basin of the Shaban Deep where the presence of variable mixtures of authochtonous and allochthonous sediment compounds had been found. The uppermost 170 cm of both sediment cores 17008-1 and 17009-3 reveal “normal” stable oxygen isotope values for the planktonic foraminifera G. ruber near -1 ‰ which is indicative for carbonate formation in Red Sea surface water around 27°C. However, below 182 cm in core 17008-1 highly variable δ 18O values for G. ruber between 0.26 and -10.68 ‰ occur which are not the result of temperature-controlled oxygen isotope fractionation between foraminiferal carbonate and Red Sea surface water. The lowest δ18O values of -10.68 ‰ measured for highly-altered foraminifera shells suggests carbonate precipitation higher than 90°C. Organic petrographical observations show a great diversity of marine-derived macerals and terrigenous organic particles. Based on petrographical investigations sediment core 17008-1 can be subdivided in intervals predominantly of authochtonous character (i.e. 1, 3, 5 corresponding to core depths 0-170 cm, 370-415 cm, 69-136 cm), and allochthonous/thermally altered character (e.g. 2, 4 corresponding to core depths 189-353 cm, 515-671 cm). Allochthonous/thermally altered material displays a wide to an extremely wide range of maturities (0.38-1.42 % Rr) and also natural coke particles were found. Similarily, the organic geochemical and pyrolysis data indicate the predominance of well-preserved, immature algal and bacterial remains with a minor contribution of land plant material. Sediments below 170 cm (core 17008-1) contain contributions of re-sedimented pre-heated material most likely from the area of the basaltic ridge. This is documented by individual coke particles reduced hydrogen indices and elevated Tmax values up to 440°C. An “oil-type” contribution (evidenced by mature biomarkers, hopene/hopane ratios, elevated background fluorescence, n-alkane distribution) is also present in the sediments which most likely originated at greater depth and impregnated the surface sediments. The heat source responsible for recrystallisation of foraminiferal carbonate and maturation of organic particles in Shaban Deep sediments most likely is attributed to modern basalt extrusions which now separate the Shaban Deep subbasins

    Carbonate record of ODP Leg 167 sites

    No full text
    One of the expected scientific results of Ocean Drilling Program Leg 167 was to reconstruct the Neogene history of biogenic calcium carbonate accumulation in the northeastern Pacific along the California margin (Lyle, Koizumi, Richter, et al., 1997). This aims to constrain inorganic carbon burial rates, deep-water hydrography in the North Pacific, and linkages between deep Atlantic and Pacific circulation and carbonate accumulation or dissolution patterns. Data are presented for four sites. Two of them are located in the California bight-East Cortez Basin (Site 1012: 32°16.970?N 118°23.024?W, 1773 m) and San Nicholas Basin (Site 1013: 32°48.040??, 118°53.992?W, 1564 m). The others are the dedicated Hole 1017E at Site 1017 (34°32.099?N, 121°6.430?W, 955 m) and Site 1019 in the Eel River Basin (41¢X40.972?N, 124°55.975?W, 977 m). Reconstruction of paleo-sea-surface temperatures (SST) by determining the alkenone unsaturation index of the extractable organic matter is an independent technique and helps to verify oxygen-isotope-based estimates. Results from the uppermost 600 cm of the dedicated Hole 1017E are expected to reveal the local temperature history of the last 30 k.y
    corecore