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Abstract 

Parasound profiles across the Shaban Deep in the Red Sea indicate turbiditic transport of 

surface sediments from the topographic hight (basalt ridge) into the interior of the deep. This 

is supported by petrographical and (isotope-) geochemical evidence in the East Basin of the 

Shaban Deep where the presence of variable mixtures of authochtonous and allochthonous 

sediment compounds had been found.  

The uppermost 170 cm of both sediment cores 17008-1 and 17009-3 reveal “normal” stable 

oxygen isotope values for the planktonic foraminifera G. ruber near -1 ‰ which is indicative 

for carbonate formation in Red Sea surface water around 27°C. However, below 182 cm in 

core 17008-1 highly variable δ 
18

O values for G. ruber between 0.26 and -10.68 ‰ occur 

which are not the result of temperature-controlled oxygen isotope fractionation between 

foraminiferal carbonate and Red Sea surface water. The lowest δ
18

O values of -10.68 ‰ 

measured for highly-altered foraminifera shells suggests carbonate precipitation  higher than 

90°C. 

Organic petrographical observations show a great diversity of marine-derived macerals and 

terrigenous organic particles. Based on petrographical investigations sediment core 17008-1 

can be subdivided in intervals predominantly of authochtonous character (i.e. 1, 3, 5 
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corresponding to core depths 0-170 cm, 370-415 cm, 69-136 cm), and 

allochthonous/thermally altered character (e.g. 2, 4 corresponding to core depths 189-353 cm, 

515-671 cm). Allochthonous/thermally altered material displays a wide to an extremely wide 

range of maturities (0.38-1.42 % Rr) and also natural coke particles were found. 

Similarily, the organic geochemical and pyrolysis data indicate the predominance of well-

preserved, immature algal and bacterial remains with a minor contribution of land plant 

material.  Sediments below 170 cm (core 17008-1) contain contributions of re-sedimented 

pre-heated material most likely from the area of the basaltic ridge. This is documented by 

individual coke particles reduced hydrogen indices and elevated Tmax values up to 440°C.  

An “oil-type” contribution (evidenced by mature biomarkers, hopene/hopane ratios, elevated 

background fluorescence, n-alkane distribution) is also present in the sediments which  most 

likely originated at greater depth and impregnated the surface sediments.  

The heat source responsible for recrystallisation of foraminiferal carbonate and maturation of 

organic particles in Shaban Deep sediments most likely is attributed to modern basalt 

extrusions which now separate the Shaban Deep subbasins.  

Keywords: Red Sea, carbonate diagenesis, sediments, turbidite, organic matter maturation  

*
 Corresponding author. Email address: rbotz@gpi.uni-kiel.de (R. Botz) 
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1. Introduction 

1.1 Tectonic setting 

The Red Sea is part of the African-Arabian rift system. The basin is near 2000 km long and 

230 km wide (Fig. 1a). Here a young oceanic basin is forming. Mature spreading centres exist 

in the central part of the Red Sea (Altherr et al., 1988) but it is unclear whether the nature of 

Red Sea mantle ascent is passive (Bonatti, 1985) or active (Camp and Roobol, 1992). Late 

stage continental rifting occurs north of 23°30`N (Cochran, 1983; Martinez and Cochran, 

1988). Further south, between 20° and 23°30`N, a transition zone exists. The zone of active 

seafloor spreading between 15° and 20°N is characterised by the formation of oceanic crust of 

MORB composition since at least 3 Ma (Altherr et al., 1988; Eissen et al., 1989). The 

structure of the crust of the northern Red Sea basin is an ongoing matter of debate but it 

appears that much is underlain by thinned continental crust and mantle cut by numerous 

intrusions (Martinez and Cochran, 1988; Voggenreiter et al., 1988).  

 

1.2 Hydrography 

Water exchange between the Red Sea and the open ocean occurs across the shallow (137 m, 

Werner & Lange, 1975) sill of Bab el Mandeb and through a narrow channel close to Perim 

Island (Morcos, 1970). As a result of very high evaporation rates (208 cm/year; Ahmad & 

Sultan, 1987) which largely exceeds water inflow by land drainage and precipitation anti-

estuarine water circulation develops. More details about Red Sea water masses are presented 

by Siddall et al. (2004) and literature given thereunder.  

The restricted nature of the Red Sea makes it very sensitive to global oceanographic changes 

caused by sea level variations (Siddall et al., 2003). Water exchange between the Red Sea and 

the open ocean was much reduced by the 120 m global sea level lowering during the last 

glacial maximum (Fairbanks, 1989). This caused a strong increase in sea water salinity up to 

50 ‰ (Locke and Thunell, 1987; Thunell et al., 1988) which was responsible for the 
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extinction of planktonic foraminifera (e.g. aplanktonic intervals; Deuser et al., 1976; Almogi-

Labin et al., 1991; Hemleben et al., 1996b; Fenton et al., 2000 and others).   

The Red Sea has numerous large depressions near the axial rift zone (Miller et al., 1966) 

which are usually filled with high-salinity brines up to 26 % (Hartmann et al., 1998 a,b). The 

origin of the brines is thought to be the result of sub-bottom leaching of Miocene evaporites 

(Manheim, 1974). Moreover, these deeps may contain metalliferous sediments which also 

indicates that they are part of hydrothermal systems (Bäcker et al., 1975; Zierenberg and 

Shanks, 1986; Blanc and Anschutz, 1995 and others).  

 

1.3 The Shaban Deep 

The Shaban Deep is located between 26°12`N to 26°15`N and 35°19`E to 35°24`E (Fig. 1b) 

within the zone of late stage continental rifting (compare above). The depression which has a 

size of approximately 60 km
2
 was discovered during a Preussag research cruise in 1981 and 

studied in detail by Pautot et al. (1984). Maximum water depth of the Shaban Deep is near 

1540 m, about 350 m deeper than the surrounding ocean floor. Steep slopes were observed at 

the southern and eastern walls (Fig. 1b). Within the Shaban Deep in the northern Red Sea 

basaltic crust crops out. Haase et al. (2000) found that the lavas in the Shaban Deep were of 

tholeiitic composition. Accordingly, magmas probably formed from an asthenospheric source 

distinct from the Arabian lithospheric mantle and have not assimilated crustal material. The 

submarine ridge at approximately 900 m water depth within the Shaban Deep represents a 

volcanic edifice stretching in 135° direction. It exhibits several flank cones and a surrounding 

plain area covered with thick layers of sediment (Haase et al., 2000). The ridge separates the 

Shaban Deep into four subbasins (Fig. 1b). The two larger, southern and eastern, subbasins 

are interconnected at 1420-1430 m water depth at the SE-end of the ridge. The brine-sea 

water interface occurs at a water depth near 1325 m in all subbasins. The brine has a 

temperature of approximately 23°C and a pH value near 6.0 (Hartmann et al., 1998a). All four 
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subbasins are filled with H2S free anoxic (<0.3 mg/l dissolved oxygen; Hartmann et al., 

1998a) brines with salinity values of 25.6-26.1 %, close to NaCl-saturation (Hartmann et al., 

1998a). 

 

1.4 Sediment types and carbonate diagenesis 

Sediments found on the submarine ridge of the Shaban Deep are mainly biogenic with some 

volcanoclastic and hydrothermal sediment layers (Cocherie et al., 1994). Sediments of central 

parts of the Shaban Deep were sampled on the occasions of several German research cruises 

to the northern Red Sea (e.g. M31-2, M44-3, M52-3 between 1995 and 2002). Basically the 

sediment cores showed alternating light brownish to grayish or olive gray carbonaceous 

horizons with olive or dark gray to black laminated organic-rich (sapropels and organic 

oozes) layers (Stoffers et al., 1990; Hemleben et al., 1996a; Seeberg-Elverfeldt et al., 

2004a,b). Sedimentation by turbidity currents is very common in the Shaban Deep and, thus, 

sediment dating of carbonate shells is not always reliable (Stoffers et al., 1990). However, 

carbon-14 dating of organic matter indicated that the cored Shaban Deep sediments are of 

postglacial age probably younger than 20 ka (Botz et al., 2007). 

During diagenesis carbonate dissolution and/or reprecipitation is determined by the saturation 

state of pore water with respect to the solid phase (Morse, 2003; Funk et al., 2003). Thus, 

carbonate minerals in deep ocean sediments are subjected to diagenetic processes (Bathurst, 

1976; Kastner, 1999 and many others). High-resolution scanning electron microscopy (SEM) 

showed that in particular planktonic foraminifera have high surface areas. Then even 

recrystallisation on a micrometer scale with good preservation of detailed shell structures is 

possible (Hemleben and Meischner, 1989; Pearson et al., 2001).  

Calcite overgrowth of foraminifera shells often increases the 
18

O values (Killingley, 1983; 

Mulitza et al., 2004) since calcite precipitation occurs under lower (early diagenetic) 

temperature compared with the ocean surface water (Schrag et al., 1995). Hence, diagenetic 
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carbonate mineral overgrowth on planktonic shells may result in incorrect temperature 

determinations of paleo- sea surface water (Pearson et al., 2001).  

Sediment diagenetic processes are also mirrored in the carbon isotopic composition of 

authigenic carbonates (Irwin et al., 1977; Pisciotto and Mahoney, 1981; Kelts and McKenzie, 

1982; Botz et al., 1988). Early aerobic oxidation causes carbonate dissolution. On the other 

hand, subsequent anaerobic oxidation processes of organic matter in course of SO4 – and CO2 

reduction (the latter process is responsible for the bacterial CH4 formation) increase the 

alkalinity and authigenic carbonates may precipitate (Claypool and Kaplan, 1974; Berner, 

1980). CO2 produced during SO4 reduction is isotopically light (enriched in 
12

C) whereas CO2 

reduction produces CO2 progressively enriched in 
13

C (Irwin et al., 1977; Pisciotto and 

Mahoney, 1981; Kelts and McKenzie, 1982). 

1.5 Scientific objective 

Former work on Shaban Deep sediments (Seeberg-Elverfeldt et al., 2004a,b, 2005,) resulted 

in stratigraphic details with implications on  paleoceanographic situations in that area. 

However, 
14

C-dating and geochemical studies on organic-rich sediments in the Shaban Deep 

are in contrast to important results of former sediment studies ( Botz et al., 2007). In order to 

better understand the stratigraphy of the sediments and possibly deduce  paleoceanographic 

and paleoclimatic implications for the northern Red Sea area we analysed the stable carbon 

and oxygen isotopes of hand-picked foraminifera from Shaban Deep sediment cores. 

However, the presence of heat-altered inorganic and organic materials in young sediments of 

the Shaban Deep further complicate any paleoceanographic application of sediment studies. 

Questions on the regional heat source in the Shaban Deep,however, are of interest to 

numerous geoscientific researchers. 

 

2. Methods 

2.1 Sediment echosounder investigations 
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Several lines across the Shaban Deep were measured by the PARASOUND
TM

  sediment 

echosounder (line HH02_61 in Fig. 1b) in order to resolve the surface sediments deposited 

southeast of the central volcanic ridge. The PARASOUND system enables high resolution 

profiling by using the parametric signal of 4 kHz that is the result of the interaction of two 

basic frequencies of 18 kHz and 22 kHz. The 4 kHz parametric signal is characterized by an 

emitting signal cone of only 4° which has a calculated footprint size of 7%. As a result the 

Parasound sediment echosounder has an excellent vertical and horizontal resolution. 

 

2.2 Coring and sediment sample pretreatment 

Sediment cores PC 17008-1 (WD 1441 m; 26°14.0’N/35°22.3’E) and PC 17009-3 (WD 1474 

m; 26°13.9’N/35°22.7’E) were recovered from the Shaban Deep (Fig. 1b) by using a 12 m 

piston corer during METEOR 31/2 cruise (Hemleben et al., 1996a). Onboard description and 

photography recorded that the sediment consists mainly of alternating sapropelic and 

carbonate-rich mud frequently disturbed by turbiditic sand and silt layers (e.g. graded 

sediments; Hemleben et al., 1996a). Petroleum odor was noticed at the base of core 17008-1 

(Hemleben et al., 1996a). Sapropelic sediments may be enriched with diatoms (siliceous mud) 

as it is described elsewhere for Shaban Deep sediments (Seeberg-Elverfeldt, 2004a,b; 2005).  

Sediment samples (10-30 g) were washed salt-free with distilled water, and dried at 60°C for 

further geochemical and isotope analyses. Foraminifera Globigerinoides ruber (white) were 

selected microscopically from 150-400 µm grain size fractions of wet sieved sediment 

samples. 

 

2.3 Characterisation of sediment components 

The shell texture of planktonic foraminifera G. ruber was documented using a scanning 

electron microscope (SEM) cam scan 44. 
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 The mineralogical composition of foraminifera shells of G. ruber (e.g. 60 to 80 samples of 

bulk shell material including diagenetic mineral overgrow) was determined by XRD-analyses 

using a Philips PW1710 (CoK ) X-ray diffractometer. 

The major element compositions of thin slights of foraminifera shells were analyzed using an  

 

electron microprobe. For preparing the EMPA samples, 15-20 G. ruber  

 

shells were picked and embedded in epoxy resin mounts (1” round slices). Polished and  

 

carbon coated slices were analysed by using a JEOL-JXA 8900 microprobe at the university  

 

of Kiel, equipped with 5 WDS spectrometers. An accelerating voltage of 15 kV, a probe  

 

current of 15-20 nA, and a focused beam were used for all samples. 

 

Trace element analyses of digested sediment samples were performed with AGILENT 7500cs 

ICPMS. Total digestion of sediment samples was achieved by acid/pressure digestion using 

HNO3/HCl/HF and HClO4 according to Garbe-Schönberg (1993). 

 

2.4 Carbon and oxygen analyses 

Inorganic and organic carbon contents of pretreated sediment samples (10-15 mg) were 

determined with coulometry (702-LI, Ströhlein Instruments). The error in determining total 

inorganic carbon (CaCO3) and total organic carbon (TOC) contents is  1-2 %. 

Stable oxygen and carbon isotope analyses of foraminifera carbonate (0.05-0.1 mg) were 

performed using a “Carbo Kiel” online CO2 preparation line coupled with a Finnigan MAT 

252 mass spectrometer. The data are reported in permil relative to the V-PDB standard. The 

error is ±0.05 ‰ for carbon and ±0.08 ‰ for oxygen isotope measurements. 

Absolute 
14

C-concentrations of selected (“fresh” without mineral overgrowth; see discussion 

below, however) foraminifera were measured with an accelerator mass spectrometer 

(Tandetron 4130, High Voltage Engineering). All samples supplied the minimum carbon 
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weight of 1 mg C necessary for good quality dating with the AMS facility with an error less 

than 0.3 % (Nadeau et al., 1998). The 
14

C-age is calculated after Stuiver and Polach, (1977). 

 

2.5 Organic geochemical analyses 

The freeze-dried sediment samples were ground in an agate mortal to less than 63 µm grain 

size. The total carbon, organic carbon, and sulfur content of the samples were measured using 

a LECO CS-200 analyzer. The type and maturity of the organic matter was analysed using 

RockEval pyrolysis. An aliquot of the sample was measured with a Delsi RockEval 6 

instrument. 

For the samples selected for molecular organic geochemical analyses an aliquot of 3 g was 

extracted with dichloromethane using a Dionex accelerated solvent extractor (ASE 200). 

Elemental sulfur was removed with activated copper. The asphaltenes were separated from 

the bulk extract by precipitation with petroleum ether. The remaining maltene and resins 

fractions were weighed and further fractionated into an aliphatic, an aromatic and a 

heterocompound fraction using medium-pressure chromatography with solvents of increasing 

polarity. 

The aliphatic fraction was analysed by gas chromatography (Agilent 6890 GC-FID) using a 

flame ionization detector signal for quantification. The separation of the compounds was 

achieved with a 60 m DB-1 column (ID 0.32 mm, film thickness 0.2 µm) using a temperature 

program of 50°(2min)-10°/min-320°(10min) and a constant carrier gas stream of helium of 1 

ml/min. Quantification was achieved for all compounds using standards of n-alkanes and their 

response factors. 

For the identification and quantification of biomarkers gas chromatography-mass 

spectrometry (Agilent 6890 – Finnigan MAT 95S) was employed using both full scan and 

metastable reaction monitoring modes. The GC conditions were identical to those in the 

above mentioned GC measurements. The scan range was m/z 50-550 with a cycle time of 
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0.7/s and a mass resolution of 1000. The MRM measurements monitored the transitions of 

specific parent ions to daughter fragments of the triterpane series (m/z 191 for hopanes and 

m/z 217 for steranes). 

 

2.6 Organic-petrographic investigations - Incident Light Microscopy 

Dried samples were crushed to <1.00 mm, placed in a 3 cm diameter mold and vacuum-

embedded using epoxy resin. After impregnation, particulate blocks were subjected to 

grinding and polishing according to the guidelines developed by Taylor et al. (1998). Overall 

up to 50 huminite/vitrinite particles were measured from each polished particulate block, in 

accordance with German Standard Guidelines (DIN 22020, Part 5). Leica DMRX microscope 

system was used for the incident and fluorescent light microscopy using x 20, x 50 and x 100 

oil immersion objectives and MPV-2 photometer system. Digital images were captured using 

Leica DC 300 F and Image Manager (IM50) Software. 

 

3. Results and discussion 

3.1 Composition of sediments in the Shaban Deep (east basin)  

Fig. 1b shows the locations of the two sediment cores under consideration. Core 17008-1 is 

positioned approximately 200 m west from core 17009-3 in the centre of the east subbasin of 

the Shaban Deep. Sediments of core 17008-1 (Fig. 2) are frequently laminated (mm to cm 

scale) or graded (cm to dm scale). Basically the sediments from the east subbasin are 

comparable to the sediments in the south basin as they are described in detail by Seeberg-

Elverfeldt et al. (2004a,b) and Botz et al. (2007). In particular, graded sediments with layers 

of planktonic foraminifera at their base (in core 17008-1 at 0-4, 127-137, 230-255, 460-500 

cm sediment depths), and features of sediment reworking (core 17008-1 at 380-400, 410-450 

cm depths) suggest that also in the east basin turbidites are the major sediment transport 

mechanism. The turbiditic sediments within the Shaban Deep were also noted by PARASOUND 
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as chaotic pattern with overlap structures (Fig. 3). The analysis of all PARASOUND profiles 

from M52/3 (Pätzold et al., 2003) shows turbiditic sediments influencing the whole Shaban 

Deep basin (Ehrhardt, 2004). The alignment of the overlap structures of line HH02_61 

suggests that mass transport from the central volcanic cone into the deep occurs (Fig. 3). Core 

location 17008-1 is approximately 300 m north to the PARASOUND track HH02_61 (Fig. 1b). 

The turbiditic nature of much of the sediments was also confirmed by X-ray radiographs 

(Olgun, 2007).  

The carbonate content of sediments from core 17008-1 is variable between 0.1 and 67 % 

(Tab. 1; Fig. 2). Both, low carbonate values and associated high organic carbon contents up to 

8.4 % are characteristic for authochtonous organic oozes and sapropels which formed within 

anaerobic brines of the Shaban Deep (Botz et al., 2007). Moreover, there is geochemical 

evidence that organic-rich sediment layers in the Shaban Deep represent times of high 

primary production in postglacial Red Sea surface water rather than variable stagnation 

conditions. In contrast, the high carbonate values in sediments of the Shaban Deep are usually 

attributed to turbiditic sediment input. Variable dilution of authochtonous (C-org. enriched 

brine-) sediment with carbonate or siliceous sediments is also responsible for variations of 

organic carbon contents of the sediments. For instance, the lower C-org. values of sapropels 

from core 17009-3 compared with sapropels from core 17008-1 (Tab. 1, Figs 2, 4) are most 

likely caused by dilution with carbonate material supplied by turbidites. 

 

3.2 Stratigraphic control 

Today the south and east subbasins of the Shaban Deep (Fig. 1b) contain an anaerobic brine 

with the same temperature and salinity (Hartmann et al., 1998a,b). Sediment core 17008-1 

exhibits two distinct horizons significantly enriched in organic carbon (at 311-359 cm up to 

5.3 % C-org. and 6 % C-org. at 171.5 cm; Fig. 2). Organic-rich sediments in the Shaban Deep 

reflect times of high organic production in Red Sea surface water (Botz et al., 2007). It is 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 12 

likely that sapropels within sediments of core 17008-1 in the east basin are time-equivalent 

with sapropels of core 17002-2 (and also with the sapropels of core GeoB 5836-2; Seeberg 

Elverfeldt et al., 2005) from the south basin (Botz et al., 2007). Accordingly, absolute age-

dating of sedimentary organic matter by AMS 
14

C analyses suggests that the thick sapropel of 

core 17002-2 (at 309-401.5 cm core depth) formed between 11.8 and 13.6 ka during the 

“Younger Dryas” a time of high bioproductivity in the northern Red Sea (Legge et al., 2006). 

AMS 
14

C-dating of selected foraminifera shells (G. ruber) with fresh appearance (see method 

section) from finely laminated (carbonate-poor, probably non-turbiditic) sediments in close 

contact with the sapropel (at 300 cm depth) and from laminated sediments just below the 

sapropel (at 405 cm) also indicated sediment ages between 13 ka and 10 ka for the major 

sapropel in core 17008-1 from the Shaban east basin (Tab. 2). Thus, the time-equivalence of 

the two major postglacial sapropels from cores 17002-2 and 17008-1 is reasonable to assume.   

Similarly, it is possible that the much thinner sapropel of core 17008-1 at 171.5 cm core depth 

(about 4.6 ka; Fig. 2; Tab. 2) correlates with a thin sapropel layer from the transition zone 

between phase I and II sediments (at 270 cm core depth, core GeoB 5836-2; Seeberg-

Elverfeldt et al., 2005).  
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3.3 Primary control on stable carbon and oxygen isotopes of foraminifera shells 

The 
13

C values of G. ruber shells from cores 17008-1 and 17009-3 are usually between 0 and 

1 ‰ (Tab. 3; Fig. 5). The carbon isotope values of the shells are determined by (near-) isotope 

equilibrium between atmospheric CO2 (
13

C =-7 ‰; Keeling, 1958) and solid calcite. 
13

C 

values near 3 ‰ are typical for inorganic calcite as there is a 10.2 ‰ fractionation between 

CO2 and carbonate at 20°C (Emrich et al., 1970). Biogenic carbonate formation includes a 

“vital effect” which is responsible for somewhat lower 
13

C values (close to 0 ‰) which may 

explain the observed -values of recent to subrecent G. ruber shells from core 17008-1 (at 0 

to 170 cm depth) and all shells from core 17009-3. 

The stable oxygen isotope compositions of the planktonic foraminifera G. ruber from both 

cores of the east basin (17008-1 and 17009-3) are shown in Fig. 6 and the data are presented 

in Tab. 3. Although there are a few minor excursions to more positive 
18

O values to 0 and 

0.7 ‰ (Fig. 6; Tab. 3), recent to subrecent (at 0-170 cm core depth) G. ruber shells of both 

cores have very similar isotope values (
18

O near –1‰). The oxygen isotope composition of 

northern Red Sea surface water is near 1.2 ‰ rel. SMOW (Ganssen and Kroon, 1991). 
18

O 

values of calcitic carbonate shells are the result of (near-isotopic equilibrium) temperature-

related oxygen isotope fractionation between carbonate and sea water (Epstein et al., 1953 and 

others since). Assuming a mean 
18

O value of –1 ‰ for recent and subrecent calcite shells 

from cores 17008-1 and 17009-3 an isotopic carbonate formation temperature of 27°C can be 

calculated. This calculated carbonate formation temperature falls in the range of temperatures 

known for surface water of the northern Red Sea (the water temperature in the northern Red 

Sea during summer is on average 26°C and some 2 °C less in winter; Ganssen and Kroon, 

1991). If the most positive 
18

O value of 1.8 ‰ would be used in the equation of Epstein et al. 

(1953), however, a low carbonate formation temperature of 14°C is calculated. This 

theoretical water temperature is not in accordance with Red Sea surface water. Hence, high 
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sea water salinity during low sea level stands in the Red Sea probably caused the positive 

18
O values of G. ruber shells. For instance, Hemleben et al. (1996b) measured positive 

18
O 

values up to about 2 ‰ for G. ruber from core Meteor 174/KL 11 (18°46.3`N; 39°19.9`E) in 

sediments deposited during low sea level stands (note the presence of an aplanktonic zone in 

Red Sea sediments due to an extreme water salinity). Hence, we can assume that postglacial 

sediments of the Shaban Deep contain various mixtures of G. ruber shells which grew during 

glacial and interglacial times. The glacial sediment material was probably redeposited by 

turbiditic activity. 

 

3.3 Diagenetic control on foraminiferal carbonate  

SEM observations of planktonic foraminifera shells in sediments of core 17008-1 from the 

Shaban Deep (Fig. 7) show dissolution features. On the other hand, the microfossils exhibit 

variable (in both thickness and surface cover) calcite overgrowth. Although not reported 

quantitatively microscopic observations of the sample material clearly indicate that the 

presence of diagenetic calcite overgrowth determines the stable isotope values of 

diagenetically altered G. ruber shells of core 17008-1 (Tab. 3, Fig. 5). One example is a 

negative 
18

O shift to -3.75 ‰ at 20 cm core depth in core 17008-1 a value significantly out 

of the range of 
18

O values found for recent foraminifera in the northern Red Sea (Ganssen 

and Kroon, 1991; Hemleben et al., 1996b; Arz et al., 2003; Lamy et al., 2006). Even stronger 

excursions towards light oxygen isotope values to –10.68 ‰ were noted in sediments of core 

17008-1 between about 182 cm and 524 cm core depth (Fig. 5). The low oxygen isotope 

values between 182 and 524 cm are not uniform, however, as within that depth range the 
18

O 

values of G. ruber shells strongly vary between 0.26 ‰ and –10.68 ‰ (Fig. 6; Tab. 3). 

This indicates high temperatures (up to 90°C) for carbonate-(pore-)water isotope equilibrium  

if normal Red Sea derived pore waters with an oxygen isotope composition of +1.2 ‰ rel. 

SMOW is used for calculation. However, due to water-rock reactions more positive δ
18

O 
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values are well known for hydrothermal fluids with endmember magmatic waters having the 

most 
18

O-enriched isotope value near +7‰ (Fritz & Fontes, 1980). Considering this span of 

very positive isotope values for the fluid the calculated temperatures of secondary carbonate 

formation increases up to150°C. Since the samples not only contain recrystallised carbonate 

but probably also original foraminifera shell material of unknown quantities the calculated 

isotopic temperatures between 90 and 150°C (depending on the isotope values of the fluid) 

represents even minimum formation temperatures. Thus, it appears reasonable to assume that 

the actual diagenetic calcite formation (e.g. mineral overgrowth) of sample 523 cm occurred 

at a significantly higher temperature than 90°C.  

Note that for comparison purposes also other types of foraminifera were investigated 

isotopically (Fig. 6, Tab. 4). Although variable in the extent of their oxygen isotope shifts the 

data clearly show that also other types of planktonic foraminifera from that depth range 

exhibit strongly negative isotope values. Such negative oxygen isotope values are not known 

for living foraminifera from world’s oceans and secondary 
16

O enrichments due to 

recrystallisation under secondary heat influence must have occurred. 

As already has been mentioned core 17008-1 contains numerous turbidites. Accordingly the 

foraminifera shells were sampled from turbiditic sediments. Nevertheless a theoretical 

possibility may exist that carbonate recrystallisation under high temperature could have 

occurred in situ within the sediments of the centre of the east basin. However, sediment 

heating by in situ hydrothermal venting in the centre of the Shaban east basin appears unlikely 

as indications for hydrothermal activity were not detected in that area (Hemleben et al., 

1996a). Moreover, the sediment record of core 17008-1 does not show hydrothermal 

sediments as they were described from elsewhere in the Red Sea area (summarized by 

Scholten et al.; 2000). Accordingly, selected trace element concentrations of bulk samples of 

sediment core 17008-1 (Tab. 5) indicate no enrichment of hydrothermal elements (e.g. Li, Zn, 

Ba, W) relative to “normal” deep sea sediments (Fig. 8), which are composed of  deep sea 
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carbonate, pelagic clay or mixtures of both (McLennan and Murray, 1999). However, 

recrystallisation of calcitic shells could have occurred in hydrothermal sediments deposited on 

the basaltic ridge of the Shaban basin. In order to check on this hypothesis we measured 

selected element concentrations along profiles across G. ruber shells from core 17008-1 using 

the electron microprobe. An example of these analyses is shown in Fig. 9. We detected 

neither significant enrichments nor decreasing element concentrations along profiles across 

individual shells. Moreover the element concentrations of recrystallised shells are comparable 

to those from non-recrystallised shells (Fig. 9). Note the only exception is Mn which is 

somewhat enriched in the recrystallised shell. This may be the result of diagenetic Mn 

remobilisation in sapropelic  sediments and it`s reprecipitation (including diagenetic 

rhodocrossite formation) within certain sediment horizons of the Shaban sediments; Stoffers 

et al.,1990). Apart from Mn the recrystallisation of shells occurred without significant 

element transport reflecting a rather uniform character of the fluid during the recrystallisation 

process (see also discussion below). 

Similar to the oxygen isotope values the somewhat lower 
13

C values of numerous G. ruber 

shells (Tab. 3, core 17008-1) are most likely related to the mineral overgrowth. This relative 

to oxygen little carbon isotope shift is explained as temperature effect. It shows that 

secondary calcite overgrowth incorporated the primary dissolved inorganic carbon involving 

no other carbon source. An exception is sample 523 cm in core 17008-1 where we measured a 

13
C value of -6.35 ‰ which indicates an additional organic carbon source for diagenetic 

calcite formation. From the presence of pyrite in the sediments (internal fillings of 

foraminifera and framboidal pyrite; Fig. 9) sulfate reduction likely occurred within sediments 

of the Shaban Deep. In accordance, sulfate reduction and 
12

C-enriched carbonate crust 

formation was indicated at various depths within surface sediments of the Shaban south basin 

(Stoffers et al., 1990). However, only one sample at 523 cm (17008-1) core depth from the 

Shaban east basin revealed a comparable negative carbon isotope value. In case in situ sulfate 
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reduction would have contributed to the organic carbon content of the pore water in core 

17008-1systematic δ
13

C change with depth should be recorded in the authigenic carbonates 

(Irwin et al., 1977; Pisciotto and Mahoney, 1981 and others since). Thus, the occurrence of a 

single 
12

C-enriched G. ruber sample in core 17008-1 also supports the idea of sediment 

redeposition rather than in situ carbonate precipitation. Sample 523 cm also had by far the 

most negative δ
18

O value (indicating a significant heat influence during carbonate formation, 

see above). Thus, we may assume that mineral overgrowth on microfossils (at 523 cm in core 

17008-1) incorporated organic carbon from sulfate reduction or decarboxylation reactions 

which probably occurred in the original sediments deposited close to the ridge basalt contact 

zone.  
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3.5 Organic Petrology 

Further support for an extern sediment heating process and subsequent turbiditic transport of 

heat-altered material into the deep sediments comes from organic petrographical and organic 

geochemical investigations. Core sediment samples from the Shaban Deep contain 

microscopically visible and identifiable organic matter of distinct marine and terrestrial 

origin. Marine-derived macerals occur either as strongly fluorescing algal bodies e.g., Fig. 10-

8. Terrigenous organic particles on the other hand are represented by pollen pollen e.g., Fig. 

10-2 or other sporomorphs e.g., Fig. 10-12 as well as detrohuminite (e.g., Fig. 10-1), 

detrovitrinite (e.g., Fig. 10-4 and 10-6 ) as well as a variety of inertinitic macerals. 

Additionally a large number of the terrigeneous particles display an apparent thermal 

degradation, e.g., Fig. 10-3, -5. Moreover, in addition to thermal alteration observed in 

organic constituents also clear mineralogical changes could be detected. Samples 3,4,5,7 

(Tab. 6) contain sulfides other than pyrites, partially corroded. In samples 11 and 12 (Tab. 6) 

oxidised framboidal pyrites were microscopically identified. 

The performance of representative vitrinite reflection measurements was hindered by both, a 

poor surface quality as well as diminutive size of the detrohuminite/detrovitrinite particles 

encountered. Their microscopic surface was often characterized by dirty appearance and 

porous texture as seen in Fig. 10-1. Particle size in samples 5,6 and 7 (Tab. 6) was in general 

lower than 3-4 µm shown in Fig. 10-6. None the less, reflection measurements were 

performed on selected particle surfaces which were regarded as being of sufficient quality. 

The measured maturity of humic land derived substance ranges from peat to high volatile 

bituminous A coals (Tab. 6). This accords well with the respective alteration of organic 

fluorescence attributed to the liptinitic matter, i.e., a relative so-called “derived maturity” 

ranging between pale green through intensive yellow, orange, dark orange, to brown, dark 

brown and black shades. Similarly, in all examined intervals dispersed bituminous particles, 

i.e. the precursors of detrohuminite, with reflectance lower than 0.37% Rr were observed. 
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These particles as such do not contribute to the respective maturity of a given interval. Their 

lack however, as shown in sample 11 and 12, (Tab. 6) may provide an insight into diagenetic 

path of these botanic forerunners, i.e., caused either upon the re-sedimentation due to physical 

degradation or upon the previously mentioned thermal influence. Both scenarios seem to be 

reasonable. 

Petrographic examinations revealed the occurrence of several well-defined intervals (Tab. 7) 

pointing towards distinct sedimentary sequences of both, predominantly authochtonous 

sequences (sediment intervals 1, 3, 5 in core 17008-1, Tab. 7) as well as allochthonous and of 

thermally altered series (sediment intervals 2 and 4 in core 17008-1, Tab. 7). 

In the predominantly authochthonous intervals and in close association with representative 

detrohuminite/detrovitrinite populations of 0.38% Rr in interval 1, 0.55% Rr in interval 3 and 

0.63% Rr in interval 5 (Tab. 7), also some reworked higher mature detrovitrinite were 

observed (Fig. 10-4, -6). The occurrence of higher mature dispersed organic matter in 

sedimentary basins is natural. These particles are thought to become additionally incorporated 

into the sedimentary succession via erosion of geologically speaking older successions at the 

time of sedimentation. Given, their comparable occurrence in both intervals 4 and 5 (Tab. 7), 

a common source for these intervals is to be assumed. Further, the same source is likewisely 

to be active prior to deposition of the sedimentary matter in interval 4 (Tab. 7) in the Shaban 

Deep. 

In contrast, sediment intervals 2 and 4 (Tab. 7) with a predominantly allochthonous / 

thermally altered character display a wide to an extremely wide range of maturity distribution 

with huminite/vitrinite reflectance from 0.38 to 1.42% Rr. The representative measured 

maturity of 0.82-0.93% Rr in interval 2 and of 0.87 to 1.12% Rr in interval 4 corresponds to 

the derived maturity (Tab. 6). The lower reflectance are measured on lower mature 

detrovitrinite and detrohuminite particles. Their maturity range is comparable to that of 

intervals 1, 3 and 5 (Tab. 7) pointing therefore to a relatively constant source of supply in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 20 

these intervals. Furthermore, microstructural features of examined detrovitrinites point to-

wards an apparent thermal alteration as reflected by their degraded, oxidised, corroded and 

partially extremely porous surfaces plus remnants and relicts as shown in Fig. 10-5. 

Moreover, next to elevated maturities of about 1.0 to 1.4% Rr also natural coke particles with 

fine grained mosaic anisotropy were detected. Besides optical anisotropy en-countered natural 

coke particles display an extremely porous texture. Thermal alteration of organic matter is 

known to occur in many sedimentary basins with coal seams and siliciclastic sedimentary 

successions being invaded by a number of igneous intrusions such as dykes, sills, etc.. The 

heat effects are in such cases local and occur over short periods of time. Extremely high 

thermal influence on dispersed organic matter can be represented by natural coke particles and 

thermally metamorphosed organic matter (Kwiecińska and Petersen, 2004). In laboratory 

experiments, terrigeneously derived macerals of vitrinite and liptinite macerals display 

profound changes when subjected to temperature range 300-500°C (Brooks and Taylor, 

1968). The product formed at 500°C is being referred to as coke with mosaic structures. It 

seems therefore probable that the encountered and thermally altered dispersed organic matter 

formed at a similar temperature range. Further, distortion of the original microstructure, i.e. 

formation of pores in the dispersed organic matter derived from the allochthonous intervals 

might be indicative of degasification of volatile matter.  

The remnants and relicts resemble to a certain degree char morphology which itself is known 

to occur as a result of coal combustion in thermal power stations.  

The occurrence of the allochthonous intervals supports a general acceptance of submarine 

sediment gravity flows e.g. turbidity flows in case of Newtonian flows or debris flows in case 

of plastic flows. 
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3.6 Organic geochemistry 

The organic material in the uppermost sediments (-1.7 m in 17008-1, -0.7 m in 17009-3) with 

a TOC content of 1.5 to 1.8 % is characterized by a mixture of very well preserved, immature 

algal and bacterial remains with a minor, but characteristic contribution of land plant derived 

material for both sites. The pyrolyses results (Tmax, HI in Tab. 8) confirm this mainly marine 

origin with hydrogen index values of 235-265. 

A small contribution from re-sedimented organic material with higher maturities is likely 

because of the slightly elevated Tmax values of 416°C and the presence of fully equilibrated 

homohopane isomers. But the predominance of the unsaturated biomarkers (e.g. the 

hopene/hopane-ratio) clearly documents the restricted importance of this component in the 

surficial sediment layers (Fig. 11). 

Sediments deeper than 1.7 m at site 17008-1 contain larger contributions of re-sedimented 

material from the ridges with elevated heat flows, documented by individual coke particles, 

reduced hydrogen indices and elevated Tmax values up to 440°C (Tab. 8). But in addition to 

this ex-situ heating of a significant proportion of the sediment a concomitant alteration of the 

organic matter by hot fluid flow after sedimentation is evident because of the strong reduction 

of the concentrations of immature biomarkers, e.g. visible in the hopene/hopane-ratio (Fig. 

11). This is evident in the elevated background fluorescence of the organic matter, too (Fig. 

11). 

Most of the samples from this depth interval contain a significant “oil-type” contribution 

(clearly visible in the n-alkane distribution and mature biomarker patterns) to the extractable 

organic material (Fig. 12). This component might have been added during the fluid flow 

through the sedimentary column. The macroscopic presence of “oily material” was 

documented for the depth of 6.67m in the core description. 

Corroborating evidence of this – perhaps much localized – fluid flow are cm-sized bleached 

zones, identified as “reaction zone” in the core description e.g. at 3.2 m. The coincidence of 
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these zones with high concentrations of biomarkers indicative of methane-oxidizing 

microorganisms (C40-biphytanes), for example at 1.9 and 5.2 m depth, and a mixture of very 

immature and mature, equilibrated biomarker isomers call for the addition of a in-situ 

microbial component to the organic material.  

 

4. Conclusions 

Parasound data show the surface sediments of the Shaban Deep to be largely transported by 

turbidites which derived from topographic heights at the edge of the deep but they also 

derived from top of the basaltic ridge separating the eastern and southern subbasins of the 

Shaban Deep.  

The composite nature of the sediments is reflected in the sediment composition of the eastern 

subbasin of the Shaban Deep. The surface sediments within the deep are of mixed origin: 

authochtonous green to black-colored sediments reflect the anaerobic brine depositional 

environment whereas brown to gray mostly carbonate-rich sediments are allochthonous in 

origin and were transported by turbidites. Detailed (isotope-) geochemical investigations of 

inorganic and organic sediment constituents are useful when differentiating the complex 

nature of the sediments.  

Sediment cores 17008-1 and 17009-3 from the east subbasin of the Shaban Deep were 

investigated in detail. Although both cores were taken very close to each other and are very 

similar in length they partly display very different geochemical data. Stable oxygen isotope 

values measured for the planktonic foraminifera G. ruber hand-picked from the uppermost 

170 cm of sediments are similar for both cores. Here the δ
18

O values of G. ruber are near -1 

‰ which reflects near isotope equilibrium for carbonate shell formation in warm (27°C) Red 

Sea surface waters. The δ
18

O values of G. ruber from core 17009-3 fluctuate between - 1.48 

and 1.64 ‰ with a slight systematic increase with depth. These values are common for 

planktonic foraminifera in young sediments from the Red Sea and reflect their formation 
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temperature and changing salinities of Red Sea surface waters. However, G. ruber selected 

from sediment core 17008-1 below 182 cm sediment depth exhibits extremely variable stable 

oxygen isotope values between 0.26 and -10.68 ‰. Such negative oxygen isotope values are 

highly unusual and are not the result of shell growth of living planktonic foraminifera in 

surface water of the Red Sea. SEM-observations clearly indicate that diagenetic processes and 

carbonate overgrowth changed the isotope values of the foraminifera shells. Based on the 

isotope value of -10.68 ‰ temperature of carbonate formation of 90 to 150°C (depending on a 

span of assumed isotope values for the fluid) is calculated. More realistic temperatures for 

diagenetic carbonate growth could be determined if the pure diagenetic overgrowth would be 

analysed. This was not possible and thus, the calculated temperature range represents a 

minimum temperature. 

Organic petrographical observations show a great diversity of marine-derived macerals and 

terrigenous organic matter in surface sediments from the eastern subbasin of the Shaban 

Deep. According to the microscopic observations sediment core 17008-1 can be subdivided in 

intervals predominantly of authochtonous character (e.g., 0-170, 69-136, 370-415 cm core 

depth) and allochthonous/thermally-altered character (e.g., 189-353, 515-671 cm core depth). 

The thermally- altered allochthonous organic particles show a wide range of maturities (0.38-

1.42 % Rr) and natural coke particles are found within these sediment intervals. The organic 

geochemical and pyrolysis data indicate a predominance of well-preserved immature algal 

and bacterial remains with a minor contribution of land plant material. Individual coke 

particles reduced hydrogen indices and elevated Tmax values up to 440°C in sediments below 

170 cm of core 17008-1 are explained by the presence of re-sedimented pre-heated materials 

in the core. Additionally, a petroleum impregnation of the deeper sediment sequence of core 

17008-1 is indicated by the strong reduction of concentrations of immature biomarkers (e.g., 

hopene/hopane-ratios) and elevated background fluorescence of organic matter reflecting an 

“oil-type” contribution (confirmed by n-alkane distribution and mature biomarker patterns). 
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Petrographical observations and (isotope-) geochemical data from young (to 13 ka) surface 

sediments of core 17008-1 indicate the presence of “normal” sediment compounds mixed 

with high-temperature altered sediment materials. Although the presence of turbiditic 

sediments is also indicated for core 17009-3 a high-temperature influence was not detected. 

This indicates that the source of the turbiditic materials in the basin differs between the 

locations.  

In-situ temperatures within the Shaban East Basin are low and the trace element data do not 

indicate recent to subrecent hydrothermalism within that area. Moreover, the close association 

of low and high-temperature sediment material suggests that mixing normal low-temperature 

authochtonous sediment material with reworked particles is responsible. The source of the 

turbiditic high-temperature altered material in sediment core 17008-1 largely derived from the 

basaltic ridge separating the east and south basins.  

The temperature and absolute age of the basaltic ridge in the Shaban Deep is very difficult to 

determine. However, temperature-influenced foraminifera shells from core 17008-1 are 

younger than approximately 13 ka which also points to a very young age of the (post) 

magmatic activity.  
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Table captions 

Tab. 1: Total carbonate- and organic carbon contents of sediment cores 17009-3 and 17008-1. 

 

Tab. 2: 
14

C-ages of planktonic foraminifera G. ruber analysed by using Accelerated Mass 

Spectrometry. 

 

Tab. 3: Oxygen and carbon isotope values of sedimentary foraminifera shells (G. ruber). 

 

Tab. 4: Stable oxygen and carbon isotope values of foraminifera shells from sediment core 

17008-1 (G. bulloides and G. sacculifer). 

 

Tab. 5: Trace element contents of sediment samples from PC 17008-1 (Shaban Deep, east 

basin). 

 

Tab. 6: Measured maturity distribution in comparison with the organic fluorescence of 

liptinitic organic matter and the derived maturity. The vitrinite reflectance values marked in 

bold represent the measured maturity matching the derived one in the respective sample. 

 

Tab. 7: Micro-petrographic characterisation of sedimentary intervals as derived from 

measured and derived maturity as well as from the type and quality of dispersed organic and 

mineral matter encountered in the respective samples. 

 

Tab. 8: Organic geochemical data. 
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Figure captions 

Fig. 1: a) Bathymetric map of the Red Sea where stages of continental rifting and seafloor 

spreading are indicated (after Cochran. 1983); b) Positions of sediment cores 17008-1 and 

17009-3 in the Shaban Deep (east basin); brine-seawater interfaces are indicated by gray 

lines. 

 

Fig. 2: Sediment sequence, 
14

C-ages of sediments, organic carbon- and calcium carbonate 

content of sediment core 17008-1. 

 

Fig. 3: Sediment echosounder line (PARASOUND) from the central volcanic cone of the Shaban 

Deep crossing the southeastern sub basin. Near the volcano is slumped material most likely 

originating from the central volcanic cone. The arrow marks the nearest position to the 

location of core PC 17008-1. The sketch illustrates the slumped sedimentary pattern resolved 

by the echosounder. 

 

Fig. 4: Sediment sequence, 
14

C ages of sediments, organic carbon- and calcium carbonate 

content of sediment core 17009-3. 

 

Fig. 5: Stable carbon isotope data of foraminifera samples (G. ruber) 

 

Fig. 6: Oxygen isotope data of foraminifera shells (G. ruber) in sediment core 17008-1. 
18

O 

values of selected G. bulloides and G. sacculifer samples are also given. 

 

Fig. 7: SEM photographs showing different degrees of foraminiferal shell calcite dissolution 

and calcite re-precipitation on shell surfaces sampled at various sediment depths in core 
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17008-1. White scale bars are 100µm (total-sized shell, left side image) and 10µm (shell 

segment, right side image). 

Fig. 8: Trace element composition of bulk sediments from core 17008-1 hosting foraminifera 

samples (G. ruber). Mean values (±min/max) of single elements as calculated from data (Tab. 

5) are compared with element concentrations typical of pelagic clay and deep sea carbonate 

(after McLennan and Murray. 1999). 

 

Fig. 9: EMPA-data of selected foraminifera from sediment core 17008-1. The EMP 

photographs show no recognizable alteration of a selected foraminifera sample at 2.5-4 cm 

core depth and intense alteration of the G. ruber shell taken at 228-232 cm depth, 

respectively. 

 

Fig. 10: Characteristic organic petrological features in sediment samples of core 17008-1 (1-

11) and 17009-3 (12). 

 

Fig. 11: Results of the organic geochemical investigations of sediment core 17008-1.  

Total organic carbon (TOC), background fluorescence of OM, Tmax, hopene/hopane ratios, 

odd-even-predominance (OEP) and C32  S/S+R are given (further discussion see text).  

 

Fig. 12: GC-FID traces of representative aliphatic fractions extracted from sediment core 

17008-1 (a: normal background sediment; b: sediment with “oil-type” hydrocarbons ). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Depth (cm) Type  SEM microscopic observation 

2.5-4 G.sacculifer 

 

well-preserved unaltered   

 

103-105 G.ruber 

 

well-preserved unaltered  

 

189-193 

228-232 

233-236 

296-299 

G.ruber 

 

intense alteration  

euhedral calcitic overgrowth 

(crystals >10µm) 

former pores are filled with calcite 

cement 

374-377 

380-386 

G. ruber 

 

minor dissolution  near pores 

no overgrowth 

470-472 

508-515 

519-526 

544-546 

550-556 

G. ruber 

 

intense alteration  

intense dissolution 

anhedral calcitic overgrowth  

(crystals <2µm) 

 

 

Figure 07
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Depth 

(cm) 

Type  EMP photography Geochemical data 

(mean value  stdv. wt %) 
2.5-4 G.sacculifer 

 

No 

recognizable 

alteration 

 

CaO 54.6  0.1 

MgO 0.17  0.04 

FeO 0.03  0.04 

MnO 0.03  0.02 

SrO 0.13  0.03 

total carbonate 98.2  0.1 

 

n = 27 

228-232 G.ruber 

 

intense 

alteration 

 

CaO 53  13 

MgO 0.28  0.14 

FeO 0.04  0.06 

MnO 0.24  0.30 

SrO 0.11  0.03 

total carbonate 96.2  2.4  

 

n = 21 

 

 

Fig. 9 
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1. Sample 1 – Dark grey porous detrohuminite in 

white incident light illumination.  

 

 
2. Sample 1 – Intensive yellow fluorescent pollen 

under blue light illumination. 

 
3. Sample 3 – Fein mosaic anisotropy observed in 

natural coke particle in white incident light 

illumination. 

 
 

4. Sample 5 – Degraded detrovitrinite particle in 

white incident light illumination. 

 
5. Sample 6 – Corroded and degraded detrovitrinite 

particles in white incident light illumination. 

 
6. Sample 7 – Fine sized grey coloured 

detrovitrinite together with bituminite of dark 

brown shade in white incident light illumination. 
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7. Sample 8 – Intensive yellow fluorescent pollen 

with air sacs under blue light illumination. 

 
8. Sample 9 – Pale yellow fluorescent alginite 

under blue light illumination. 

 
9. Sample 10 – Detrovitrinite white incident light 

illumination. 

 
10. Sample 11 – Degraded and porous terrigeneous 

organic matter in white incident light illumination 

 

11. Sample 12 – Very fine sized detrohuminite in 

white incident light illumination. 

12. Sample 13 – Yellow fluorescent sporomorph 

under blue light illumination. 

 

Fig. 10 
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Fig. 11 
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Fig. 12 
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Tab. 1 

Sediment depth CaCO3 TOC 

(cm) (wt %) (wt %) 

PC 17009-3 

73 58.69 1.94 

135 45.82 1.04 

248 54.46 1.35 

365 75.23 0.25 

476 44.15 1.83 

584 46.3 3.49 

584 46.3 3.49 

756 43.43 1.18 

846 32.04 1.22 

985 37.41 1.48 

998 0.74 2.78 

1046 37.43 1.49 

1074 36.84 0.63 

PC 17008-1 

1.00 55.75 0.94 

5.00 32.43 2.07 

18.00 31.05 1.77 

26.50 43.87 0.59 

45.00 37.24 1.07 

89.00 37.92 1.16 

131.00 38.07 1.39 

144.50 39.76 1.06 

155.50 33.18 1.43 

171.50 0.10 6.02 

176.50 47.88 0.63 

219.00 40.32 0.15 

239.00 69.89 0.10 

246.50 62.31 0.66 

258.00 35.14 0.49 

281.00 34.39 0.55 

300.50 41.77 0.10 

311.00 0.10 4.42 

326.00 0.10 3.86 

359.00 0.10 5.28 

383.00 42.21 0.83 

393.00 25.91 1.54 

405.00 45.00 0.37 

413.00 22.30 2.66 

447.00 31.53 0.41 

473.00 40.99 1.07 

483.00 40.04 1.03 

495.00 32.49 1.26 

513.00 40.18 0.49 

523.00 40.28 0.60 

553.00 36.45 0.85 

592.00 0.49 0.58 
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598.00 3.29 0.70 

620.00 25.80 0.47 

633.00 23.64 0.44 

655.00 19.25 0.53 

659.00 40.27 0.48 

659.00 40.27 0.48 

670.00 15.30 0.50 

670.00 17.54 0.48 

673.00 31.85 0.53 
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Tab. 2 

 
Core No. Sediment Depth 

(cm) 

14
C-age 
(ka) 

17008-1 165 4.60 

 225 8.00 

 300 10.40 

 405 13.00 

17009-3 90 5.70 

 260 8.00 

 440 10.40 

 560 13.00 
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Tab. 3 

Sediment depth 18
O 

13
C 

(cm) (‰ V-PDB) (‰ V-PDB) 

PC 17009-3 

8 -0.66 0.85 

11 -0.23 1.02

15 0.53 0.16

18 0.72 0.51

21 0.00 0.39

24 -0.22 0.59

28 -1.27 0.45

34 -1.12 0.57

37.5 -1.48 0.71

44 -0.79 0.69

48 -0.96 0.50

54 -1.17 0.65

57 -0.86 0.42

61 -1.13 0.78

64.5 -0.75 0.63

67.5 -0.90 0.57

71 -0.83 0.43

73 -0.69 0.77

77 -0.84 0.50

81 -0.63 0.82

84 -0.93 0.74

87 -0.77 0.79

91 -0.83 0.54

94 -0.80 0.75

97 0.26 1.03

121 0.57 0.68

131 -0.37 0.91

141 -0.83 1.13

151 -0.94 1.06

161 -0.72 0.50

171 -0.38 0.90

181 1.22 0.40

191 -0.14 0.73

221 -0.77 1.03

231 -1.25 0.42

241 0.16 0.22

251 -0.82 1.23

261 -0.80 1.15

271 -1.02 1.09

281 0.85 0.52

291 0.98 0.69

303 0.60 1.09 

311 0.81 0.93 

321 0.07 0.76 

331 0.03 0.81 

341 0.15 0.43 
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351 -0.76 0.64 

361 -1.16 0.66 

371 -0.01 0.54 

381 0.04 0.48

391 0.91 0.77

401 0.79 0.61

421 -0.16 0.83

431 0.24 0.90

441 1.64 0.29

451 0.57 0.74

463 0.23 0.52

471 0.35 1.14

481 0.51 1.03

491 0.26 1.14

503 0.77 0.77

521 0.75 0.90

531 0.63 0.90

541 1.15 0.78

551 1.22 0.33

561 1.28 0.73

581 0.48 0.76

591 1.06 0.48

604 1.27 0.41

621 1.03 0.70

631 0.50 0.72

641 0.76 0.83

651 0.66 0.78

661 0.55 0.90

671 0.27 0.60

681 0.42 0.46

691 1.57 0.38

705 -0.23 0.73

716 1.07 0.09

731 0.76 0.06

 0.76 0.41

751 1.00 0.24

761 1.17 0.29

771 -0.69 0.51

781 1.14 0.87

791 1.49 0.54

803 0.62 0.65

811 1.21 0.52

821 1.16 0.66

831 1.36 0.63

   

PC 17008-1 

2.25 -0.37 0.98 

6 -0.89 0.95 

10 -1.11 1.09 

13 -0.96 0.81 

17 -1.28 0.68 
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20 -3.75 0.22 

23 -1.34 0.57 

27 -1.16 0.72 

31 -0.90 0.81 

33 -0.91 0.55 

38 -0.71 0.55 

43 -0.91 0.78 

46 -0.82 0.71 

50 -0.65 0.72 

53 -0.81 0.64 

56 -0.99 0.82 

58.75 -0.90 0.27 

63 -0.62 0.39 

66 -0.94 0.55 

69 -0.05 0.45 

71 -0.65 0.28 

76 -0.48 0.50 

80 -0.56 0.50 

81 -0.80 0.39 

86 -0.96 0.65 

90 -1.26 0.49 

93 -0.64 0.58 

100 -1.35 0.52 

106 -0.63 0.04 

110 -0.54 0.41 

113 -0.98 0.51 

123 -1.05 0.81 

133 -1.02 0.42 

142 -0.90 0.63 

153 -1.09 0.50 

164 -0.80 0.32 

171 0.33 0.54 

183 -2.80 0.87 

193 -2.64 0.36 

223 -3.13 0.31 

230.5 -6.94 0.08 

243 -4.62 0.59 

253 -3.21 0.00 

263.5 -3.97 -0.13 

273 -2.78 0.29 

283 -3.66 -0.10 

303 -4.57 0.28 

311 -4.65 -0.57 

323 -2.93 0.42 

333 -5.71 -0.16 

343 -1.83 0.89 

353 -2.27 0.70 

365 -2.20 0.44 

373 -4.10 -0.10 

383 0.26 0.02 

393 -3.10 0.37 
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403 -3.24 0.32 

425 -6.38 0.03 

443 -4.27 0.38 

473 -4.74 0.28 

483 -3.20 0.88 

513 -0.67 0.67 

523 -10.68 -6.35 

553 -1.31 -0.57 

633 -0.65 0.72 
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Tab. 4 

 

G. bulloides G. sacculifer 

Sediment depth 

(cm) 

18
O 

(‰) 

13
C 

(‰) 

Sediment depth 

(cm) 

18
O 

(‰) 

13
C 

(‰) 

103-105 1.03 -0.81 2.5-4 0.23 2.76 

189-192 -3.85 -0.25 20.5-21.5 0.00 2.62 

228-232 -7.75 -0.76 103-105 0.12 2.26 

335-337 -3.59 -2.71 189-192 -5.17 1.96 

375-376 -0.23 -1.25 228-232 -9.37 0.61 

470-472 -4.73 -3.18 335-337 -5.12 -0.30 

519-523 -4.67 -2.41    
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Tab. 5 
Sedi-
ment
depth 

Li S
c 

V C
r 

C
o 

Ni C
u 

Z
n 

G
a 

Sr Y Zr Nb M
o 

C
d 

S
n 

S
b 

C
s 

B
a 

L
a 

C
e 

Pr N
d 

S
m 

E
u 

G
d 

T
b 

D
y 

H
o 

Er T
m 

Y
b 

L
u 

Hf T
a 

W Tl P
b 

T
h 

U 

(cm) (p
pm
) 
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Tab. 6 

Sample ID Measured maturity 
Organic 

fluorescence 
Derived 
maturity 

 (% Rr)  (% Rr) 

PC 17008-1 

1 0.15  0.38        
pale green-

green 
0.2-0.45 

2 0.19  0.37  0.63     
pale green -

green 
0.2-0.45 

3 0.15 0.26         
pale brown-dark 

brown 
0.75-0.95 

4 0.10 0.25 0.42 0.52    0.93   
dark brown-

black 
0.95-1.20 

5 0.18  0.38        pale brown 0.75-0.85 

6  0.27 0.38 0.57   0.82   
dark orange-
pale brown 

0.65-0.75 

7 0.18  0.40        
dark orange-
pale brown 

0.65-0.75 

8 0.15 0.27  0.55       
Intensive yellow-

dark yellow 
0.45-0.60 

9 0.18          
yellow-dark 

yellow 
0.50-0.60 

10 0.13  0.38 0.57       
brown-dark 

brown 
0.75-0.95 

11    0.52  0.72 0.87  1.12 1.42 dark brown 0.95-1.10 

12     0.68   0.97   dark brown 0.95-1.10 

PC 17009-3 

13  0.27   0.63      
orange-dark 

orange 
0.55-0.65 

14       0.85  1.12  
orange-dark 

orange 
0.55-0.65 

15  0.25     0.86    
orange-dark 

orange 
0.55-0.65 
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Tab. 7 

Sample ID Depth 
Inter
val 

Association of dispersed organic particles 

Comments autochthonous 
detrohuminite or 

detrovitrinite 

Allochthonous 
detrovitrinite 

incorporated at 
a time of 

deposition 

Allochthonous 
detrovitrinite 

incorporated at a 
time of re-

sedimentation 

Thermally 
altered 

PC 17008-1 

1 
2 

0.13-0.18 
1.67-1.70 

1 Yes Yes Yes  

 Correspondence of representative measured and derived maturity 
giving rise to autochthonous character of detrohuminite 

 Incorporation of higher mature detrovitrinite indicative of their 
allochthonous character either at a time of deposition or 
resedimentation 

 Lack of thermally altered dispersed organic particles 

3 
4 
5 
6 
7 

1.89-1.96 
2.32-2.36 
2.80-2.83 
3.09-3.12 
3.50-3.53 

2   Yes Yes 

 A relative sharp change in the measured and derived maturity 
pointing towards a clear break in the sedimentation 

 A wide maturity distribution pointing towards an allochthonous 
character of the entire interval. reworking most probably at a time 
of resedimentation 

 Incorporation of lower mature detrohuminites and detrovitrinites 
indicating a similar source for these particles as for interval 1.  

 Incorporation of higher mature detrovitrinite  

 Apparent presence of thermally altered. i.e.. porous. oxidised. 
degraded dispersed organic particles 

 Observation of natural coke particles  

 Presence of extensively oxidised and corroded  
   framboidal pyrite particles 

8 
9 

3.74-3.77 
4.12-4.15 

3 Yes    

 A renewed sharp change in the measured and derived maturity 
pointing towards anew break in the sedimentation 

 Correspondence of representative measured and derived maturity 
giving rise to autochthonous character of detrovitrinite 

 Lack of higher mature detrovitrinite 

 Lack of thermally altered dispersed organic particles 
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Cont. Tab. 7 

Sample ID Depth 
Inter-
val 

Association of dispersed organic particles 

Comments autochthonous 
detrohuminite 

or detrovitrinite 

Allochthonous 
detrovitrinite 

incorporated at 
a time of 

deposition 

Allochthonous 
detrovitrinite 

incorporated at a 
time of 

resedimentation 

Thermally 
altered 

10 
11 
12 

5.15-5.19 
5.90-5.93 
6.67-6.71 

4  Yes Yes 

 A renewed sharp change in the measured and derived maturity 
pointing towards a new break in the sedimentation 

 An extremely wide maturity distribution pointing towards an 
allochthonous character of the entire interval. most probably at a 
time of resedimentation 

 Incorporation of lower mature detrohuminites indicating a similar 
source as for the above intervals.  

 Presence of the highest thermal maturity being measured 
matching the derived maturity and pointing toward an apparent 
thermal impact upon the dispersed organic matter 

PC 17009-3 

13 
14 
15 

0.69-0.72 
1.72-1.75 
1.33-1.36 

5 Yes  Yes  

 Correspondence of representative measured and derived maturity 
giving rise to autochthonous character of lower mature 
detrovitrinite 

 Incorporation of higher mature detrovitrinite distribution pointing 
towards their allochthonous character. most probably at a time of 
resedimentation 

 Incorporation of some reworked natural coke particles indicative of 
reworking 
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Tab. 8 

Sediment 

depth 
TOC Tmax HI 

C32 ab 

S/S+R 
C30en/ab+en OEP C29 

(m) (%) (°C)     

PC 17008-1 

0.18 1.81 416 265 0.57 0.56 4.4 

1.7 1.63 416 235 0.60 0.51 5.9 

1.96 0.34 434 106 0.25 0.00 1.3 

2.36 0.14     1.3 

2.83 0.36   0.59 0.14 1.6 

3.12 0.51 430 63 0.57 0.00 1.4 

3.53 0.77 440 129 0.21 0.03 1.6 

3.77 0.91 433 149 0.19 0.04 1.9 

4.15 2.35 425 330 0.21 0.08 1.2 

5.19 0.35 428 129 0.47 0.00 1.3 

5.93 0.29   0.43 0.00 1.7 

6.71 0.43     1.2 

PC 17009-3 

0.72 1.45 417 243 0.64 0.73 5.6 

1.36 0.6   0.29 0.05 5.6 

1.75 0.67   0.37 0.15 5.1 
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 The Shaban Deep in the Red Sea contains heat-altered foraminiferal shells and organic 

matter. 

 Young basalt extrusions in the Shaban Deep are responsible for recrystallisation and 

maturation effects. 

 Indirect age-dating of basalts by the occurrence of redeposited heat-altered sediment 

components. 

 Detection of migrated hydrocarbons in surface sediments of the Deep. 

Research highlights 




