245 research outputs found

    Improved Visualization of Juxtaprosthetic Tissue Using Metal Artifact Reduction Magnetic Resonance Imaging: Experimental and Clinical Optimization of Compressed Sensing SEMAC

    Full text link
    OBJECTIVES The purpose of this study was to identify an optimal imaging protocol for metal artifact reduced magnetic resonance imaging by application of different imaging and postprocessing parameters in compressed sensing slice-encoding for metal artifact correction (CS-SEMAC) and to test it in patients with total hip arthroplasty (THA). MATERIALS AND METHODS In an experimental setup, a phantom consisting of a standard THA embedded in gadolinium-containing agarose was scanned at 1.5 T. Pulse sequences included coronal short tau inversion recovery (STIR), T1-weighted (w), and T2-w CS-SEMAC sequences. All pulse sequences were acquired with 11, 19, and 27 slice-encoding steps (SESs), respectively. For each raw dataset, postprocessing was performed with variations of the parameters: (1) number of iterations (5, 10, 20, 30, 50) and (2) normalization factor (0.0005, 0.001, 0.002, 0.003, 0.005). Following, in clinical magnetic resonance scans of patients with THA, identical STIR, T1-w, and T2-w pulse sequences with 11 and 19 SESs were acquired and were postprocessed similarly with variations in parameters. Semiquantitative outcome measures were assessed on a 5-point scale (1 = best, 5 = worst). The overall best image quality was determined. Signal-to-noise ratio and contrast-to-noise ratio were calculated. Statistical analyses included descriptive statistics, t-tests, multivariate regression models, and partial Spearman correlations. RESULTS Scan times varied between 2:24 (T2-w, 11 SESs) and 8:49 minutes (STIR, 27 SESs). Reconstruction times varied between 3:14 minutes (T1-w, 11 SESs, 5 iterations) and 85:00 minutes (T2-w, 27 SESs, 50 iterations). Signal-to-noise ratio and contrast-to-noise ratio increased with increasing SESs, iterations, and normalization factor. In phantom scans, artifact reduction was optimal with an intermediate normalization factor (0.001) and improved with higher SESs and iterations. However, iterations greater than 20 did not improve artifact reduction or image quality further. On the contrary, ripple artifacts increased with higher SESs and iterations. In clinical scans, up to 20 iterations reduced blurring of the image; no further reduction was observed with iterations greater than 20. A normalization factor of 0.001 or 0.002 was best for reduction of blurring, whereas the soft tissue contrast was better and the distortion of soft tissue was less severe with lower normalization factors. Overall best soft tissue image quality was found for STIR and T1-w images with 19 SESs, 10 iterations, and a normalization factor of 0.001, and for T2-w images with 11 SESs, 10 iterations, and a normalization factor of 0.0005. CONCLUSIONS Optimized advanced acceleration and reconstruction algorithms of CS-SEMAC have been identified to reduce metal artifacts in patients with THA enabling imaging with clinically feasible acquisition and reconstruction times

    Ultra-precise measurement of optical frequency ratios

    Full text link
    We developed a novel technique for frequency measurement and synthesis, based on the operation of a femtosecond comb generator as transfer oscillator. The technique can be used to measure frequency ratios of any optical signals throughout the visible and near-infrared part of the spectrum. Relative uncertainties of 10−1810^{-18} for averaging times of 100 s are possible. Using a Nd:YAG laser in combination with a nonlinear crystal we measured the frequency ratio of the second harmonic νSH\nu_{SH} at 532 nm to the fundamental ν0\nu_0 at 1064 nm, νSH/ν0=2.000000000000000001×(1±7×10−19)\nu_{SH}/\nu_0 = 2.000 000 000 000 000 001 \times (1 \pm 7 \times 10^{-19}).Comment: 4 pages, 4 figure

    Spontaneous splenic rupture in an active duty Marine upon return from Iraq: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Atraumatic splenic rupture is a rare event that has been associated with several infectious disease processes. In the active duty military population, potential exposure to these pathogens is significant. Here we discuss the case of an active duty Marine with spontaneous splenic rupture upon return from a six-month deployment in Iraq.</p> <p>Case presentation</p> <p>A previously healthy 30-year-old Caucasian male active duty Marine presented with abdominal pain, fever and diarrhea after deployment to Iraq in support of Operation Iraqi Freedom. Based on clinical and radiographic evidence, a diagnosis of spontaneous splenic rupture was ultimately suspected. After exploratory laparotomy with confirmation of rupture, splenectomy was performed, and the patient made a full, uneventful recovery. Histopathologic examination revealed mild splenomegaly with a ruptured capsule of undetermined cause.</p> <p>Conclusion</p> <p>Spontaneous splenic rupture is a rare event that may lead to life-threatening hemorrhage if not diagnosed and treated quickly. Although the cause of this patient's case was unknown, atraumatic splenic rupture has been associated with a variety of infectious diseases and demonstrates some risks the active duty military population may face while on deployment. Having an awareness of these pathogens and their role in splenic rupture, clinicians caring for military personnel must be prepared to recognize and treat this potentially fatal complication.</p

    Decoupling of Lattice and Orbital Degrees of Freedom in an Iron-Pnictide Superconductor

    Full text link
    The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electronic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature (Tort∼250T_\mathrm{ort} \sim 250 K), which coexists with superconductivity (Tc=25T_\mathrm{c} = 25 K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.Comment: SI available upon reques

    Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coregulator proteins are "master regulators", directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3, AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations with breast cancer risk.</p> <p>Methods</p> <p>The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans). To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840).</p> <p>Results</p> <p>Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No significant associations were found with the other SNPs genotyped.</p> <p>Conclusions</p> <p>This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted.</p

    Orbital-selective metal skin induced by alkali-metal-dosing Mott-insulating Ca2RuO4

    Full text link
    Doped Mott insulators are the starting point for interesting physics such as high temperature superconductivity and quantum spin liquids. For multi-band Mott insulators, orbital selective ground states have been envisioned. However, orbital selective metals and Mott insulators have been difficult to realize experimentally. Here we demonstrate by photoemission spectroscopy how Ca2_{2}RuO4_{4}, upon alkali-metal surface doping, develops a single-band metal skin. Our dynamical mean field theory calculations reveal that homogeneous electron doping of Ca2_{2}RuO4_{4} results in a multi-band metal. All together, our results provide evidence for an orbital-selective Mott insulator breakdown, which is unachievable via simple electron doping. Supported by a cluster model and cluster perturbation theory calculations, we demonstrate a type of skin metal-insulator transition induced by surface dopants that orbital-selectively hybridize with the bulk Mott state and in turn produce coherent in-gap states

    Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen

    Get PDF
    SummaryBoth hypoxic and inflammatory conditions activate transcription factors such as hypoxia-inducible factor (HIF)-1α and nuclear factor (NF)-κB, which play a crucial role in adaptive responses to these challenges. In dendritic cells (DC), lipopolysaccharide (LPS)-induced HIF1α accumulation requires NF-κB signaling and promotes inflammatory DC function. The mechanisms that drive LPS-induced HIF1α accumulation under normoxia are unclear. Here, we demonstrate that LPS inhibits prolyl hydroxylase domain enzyme (PHD) activity and thereby blocks HIF1α degradation. Of note, LPS-induced PHD inhibition was neither due to cosubstrate depletion (oxygen or α-ketoglutarate) nor due to increased levels of reactive oxygen species, fumarate, and succinate. Instead, LPS inhibited PHD activity through NF-κB-mediated induction of the iron storage protein ferritin and subsequent decrease of intracellular available iron, a critical cofactor of PHD. Thus, hypoxia and LPS both induce HIF1α accumulation via PHD inhibition but deploy distinct molecular mechanisms (lack of cosubstrate oxygen versus deprivation of co-factor iron)

    Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Get PDF
    BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario
    • …
    corecore