10 research outputs found

    High activity redox catalysts synthesized by chemical vapor impregnation

    Get PDF
    The use of precious metals in heterogeneous catalysis relies on the preparation of small nanoparticles that are stable under reaction conditions. To date, most conventional routes used to prepare noble metal nanoparticles have drawbacks related to surface contamination, particle agglomeration, and reproducibility restraints. We have prepared titania-supported palladium (Pd) and platinum (Pt) catalysts using a simplified vapor deposition technique termed chemical vapor impregnation (CVI) that can be performed in any standard chemical laboratory. These materials, composed of nanoparticles typically below 3 nm in size, show remarkable activity under mild conditions for oxidation and hydrogenation reactions of industrial importance. We demonstrate the preparation of bimetallic Pd–Pt homogeneous alloy nanoparticles by this new CVI method, which show synergistic effects in toluene oxidation. The versatility of our CVI methodology to be able to tailor the composition and morphology of supported nanoparticles in an easily accessible and scalable manner is further demonstrated by the synthesis of Pdshell–Aucore nanoparticles using CVI deposition of Pd onto preformed Au nanoparticles supported on titania (prepared by sol immobilization) in addition to the presence of monometallic Au and Pd nanoparticles

    Aharonov-Bohm oscillations in carbon nanotubes

    No full text
    When electrons pass through a cylindrical electrical conductor aligned in a magnetic field, their wave-like nature manifests itself as a periodic oscillation in the electrical resistance as a function of the enclosed magnetic Flux. This phenomenon reflects the dependence of the phase of the electron wave on the magnetic field, known as the Aharonov-Bohm effect, which causes a phase difference, and hence interference, between partial waves encircling the conductor in opposite directions. Such oscillations have been observed in micrometre-sized thin-walled metallic cylinders and lithographically fabricated rings. Carbon nanotubes are composed of individual graphene sheets rolled into seamless hollow cylinders with diameters ranging from 1 nm to about 20 nm. They are able to act as conducting molecular wires, making them ideally suited for the investigation of quantum interference at the single-molecule level caused by the Aharonov-Bohm effect. Here we report magnetoresistance measurements on individual multi-walled nanotubes, which display pronounced resistance oscillations as a function of magnetic flux. We find that the oscillations are in good agreement with theoretical predictions for the Aharonov-Bohm effect in a hollow conductor with a diameter equal to that of the outermost shell of the nanotubes. In some nanotubes we also observe shorter-period oscillations, which might result from anisotropic electron currents caused by defects in the nanotube lattice

    Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications

    No full text
    Owing to the three different orbital hybridizations carbon can adopt, the existence of various carbon nanoallotropes differing also in dimensionality has been already affirmed with other structures predicted and expected to emerge in the future. Despite numerous unique features and applications of 2D graphene, 1D carbon nanotubes, or 0D fullerenes, nanodiamonds, and carbon quantum dots, which have been already heavily explored, any of the existing carbon allotropes do not offer competitive magnetic properties. For challenging applications, carbon nanoallotropes are functionalized with magnetic species, especially of iron oxide nature, due to their interesting magnetic properties (superparamagnetism and strong magnetic response under external magnetic fields), easy availability, biocompatibility, and low cost. In addition, combination of iron oxides (magnetite, maghemite, hematite) and carbon nanostructures brings enhanced electrochemical performance and (photo)catalytic capability due to synergetic and cooperative effects. This work aims at reviewing these advanced applications of iron-oxide-supported nanocarbon composites where iron oxides play a diverse role. Various architectures of carbon/iron oxide nanocomposites, their synthetic procedures, physicochemical properties, and applications are discussed in details. A special attention is devoted to hybrids of carbon nanotubes and rare forms (mesoporous carbon, nanofoam) with magnetic iron oxide carriers for advanced environmental technologies. The review also covers the huge application potential of graphene/iron oxide nanocomposites in the field of energy storage, biomedicine, and remediation of environment. Among various discussed medical applications, magnetic composites of zero-dimensional fullerenes and carbon dots are emphasized as promising candidates for complex theranostics and dual magneto-fluorescence imagingclose5

    Motor cortex — to act or not to act?

    No full text
    corecore