703 research outputs found
Angiogenesis PET Tracer Uptake (<sup>68</sup>Ga-NODAGA-E[(cRGDyK)]<sub>2</sub>) in Induced Myocardial Infarction and Stromal Cell Treatment in Minipigs
Angiogenesis is considered integral to the reparative process after ischemic injury. The αvβ3 integrin is a critical modulator of angiogenesis and highly expressed in activated endothelial cells. 68Ga-NODAGA-E[(cRGDyK)]2 (RGD) is a positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. The aim was to present data for the uptake of RGD and correlate it with histology and to further illustrate the differences in angiogenesis due to porcine adipose-derived mesenchymal stromal cell (pASC) or saline treatment in minipigs after induction of myocardial infarction (MI). Three minipigs were treated with direct intra-myocardial injection of pASCs and two minipigs with saline. MI was confirmed by 82Rubidium (82Rb) dipyridamole stress PET. Mean Standardized Uptake Values (SUVmean) of RGD were higher in the infarct compared to non-infarct area one week and one month after MI in both pASC-treated (SUVmean: 1.23 vs. 0.88 and 1.02 vs. 0.86, p < 0.05 for both) and non-pASC-treated minipigs (SUVmean: 1.44 vs. 1.07 and 1.26 vs. 1.04, p < 0.05 for both). However, there was no difference in RGD uptake, ejection fractions, coronary flow reserves or capillary density in histology between the two groups. In summary, indications of angiogenesis were present in the infarcted myocardium. However, no differences between pASC-treated and non-pASC-treated minipigs could be demonstrated
Prediction of first cardiovascular disease event in 2.9 million individuals using Danish administrative healthcare data:a nationwide, registry-based derivation and validation study
AIMS: The aim of this study was to derive and validate a risk prediction model with nationwide coverage to predict the individual and population-level risk of cardiovascular disease (CVD). METHODS AND RESULTS: All 2.98 million Danish residents aged 30–85 years free of CVD were included on 1 January 2014 and followed through 31 December 2018 using nationwide administrative healthcare registries. Model predictors and outcome were pre-specified. Predictors were age, sex, education, use of antithrombotic, blood pressure-lowering, glucose-lowering, or lipid-lowering drugs, and a smoking proxy of smoking-cessation drug use or chronic obstructive pulmonary disease. Outcome was 5-year risk of first CVD event, a combination of ischaemic heart disease, heart failure, peripheral artery disease, stroke, or cardiovascular death. Predictions were computed using cause-specific Cox regression models. The final model fitted in the full data was internally-externally validated in each Danish Region. The model was well-calibrated in all regions. Area under the receiver operating characteristic curve (AUC) and Brier scores ranged from 76.3% to 79.6% and 3.3 to 4.4. The model was superior to an age-sex benchmark model with differences in AUC and Brier scores ranging from 1.2% to 1.5% and −0.02 to −0.03. Average predicted risks in each Danish municipality ranged from 2.8% to 5.9%. Predicted risks for a 66-year old ranged from 2.6% to 25.3%. Personalized predicted risks across ages 30–85 were presented in an online calculator (https://hjerteforeningen.shinyapps.io/cvd-risk-manuscript/). CONCLUSION: A CVD risk prediction model based solely on nationwide administrative registry data provided accurate prediction of personal and population-level 5-year first CVD event risk in the Danish population. This may inform clinical and public health primary prevention efforts
Population genomics of the Viking world.
The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways
Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016.
METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone.
FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an
Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
- …