744 research outputs found
Allosteric control of cyclic di-GMP signaling
Cyclic di-guanosine monophosphate is a bacterial second messenger that has been implicated in biofilm formation, antibiotic resistance, and persistence of pathogenic bacteria in their animal host. Although the enzymes responsible for the regulation of cellular levels of c-di-GMP, diguanylate cyclases (DGC) and phosphodiesterases, have been identified recently, little information is available on the molecular mechanisms involved in controlling the activity of these key enzymes or on the specific interactions of c-di-GMP with effector proteins. By using a combination of genetic, biochemical, and modeling techniques we demonstrate that an allosteric binding site for c-di-GMP (I-site) is responsible for non-competitive product inhibition of DGCs. The I-site was mapped in both multi- and single domain DGC proteins and is fully contained within the GGDEF domain itself. In vivo selection experiments and kinetic analysis of the evolved I-site mutants led to the definition of an RXXD motif as the core c-di-GMP binding site. Based on these results and based on the observation that the I-site is conserved in a majority of known and potential DGC proteins, we propose that product inhibition of DGCs is of fundamental importance for c-di-GMP signaling and cellular homeostasis. The definition of the I-site binding pocket provides an entry point into unraveling the molecular mechanisms of ligand-protein interactions involved in c-di-GMP signaling and makes DGCs a valuable target for drug design to develop new strategies against biofilm-related diseases
Minicells as a Damage Disposal Mechanism in Escherichia coli
Many bacteria produce small, spherical minicells that lack chromosomal DNA and therefore are unable to proliferate. Although minicells have been used extensively by researchers as a molecular tool, nothing is known about why bacteria produce them. Here, we show that minicells help Escherichia coli cells to rid themselves of damaged proteins induced by antibiotic stress. By comparing the survival and growth rates of wild-type strains with the E. coliΔminC mutant, which produces excess minicells, we found that the mutant was more resistant to streptomycin. To determine the effects of producing minicells at the single-cell level, we also tracked the growth of ΔminC lineages by microscopy. We were able to show that the mutant increased the production of minicells in response to a higher level of the antibiotic. When we compared two sister cells, in which one produced minicells and the other did not, the daughters of the former had a shorter doubling time at this higher antibiotic level. Additionally, we found that minicells were more likely produced at the mother's old pole, which is known to accumulate more aggregates. More importantly, by using a fluorescent IbpA chaperone to tag damage aggregates, we found that polar aggregates were contained by and ejected with the minicells produced by the mother bacterium. These results demonstrate for the first time the benefit to bacteria for producing minicells.IMPORTANCE Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell's volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials
Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases
Abstract.: Dihydroxyacetone (Dha) kinases are a family of sequence-conserved enzymes which utilize either ATP (in animals, plants and eubacteria) or phosphoenolpyruvate (PEP, in eubacteria) as their source of high-energy phosphate. The kinases consist of two domains/subunits: DhaK, which binds Dha covalently in hemiaminal linkage to the Nε2 of a histidine, and DhaL, an eight-helix barrel that contains the nucleotide-binding site. The PEP-dependent kinases comprise a third subunit, DhaM, which rephosphorylates in situ the firmly bound ADP cofactor. DhaM serves as the shuttle for the transfer of phosphate from the bacterial PEP: carbohydrate phosphotransferase system (PTS) to the Dha kinase. The DhaL and DhaK subunits of the PEP-dependent Escherichia coli kinase act as coactivator and corepressor of DhaR, a transcription factor from the AAA+ family of enhancerbinding proteins. In Gram-positive bacteria genes for homologs of DhaK and DhaL occur in operons for putative transcription factors of the TetR and DeoR families. Proteins with the Dha kinase fold can be classified into three families according to phylogeny and function: Dha kinases, DhaK and DhaL homologs (paralogs) associated with putative transcription regulators of the TetR and DeoR families, and proteins with a circularly permuted domain order that belong to the DegV famil
Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies
The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes
Pulsed positive discharges in air at moderate pressures near a dielectric rod
We study pulsed positive discharges in air in a cylindrically symmetric setup with an electrode needle close (about 1 mm) above the top of a dielectric cylindrical rod of 4 mm in diameter mounted at its bottom on a grounded plate electrode. We present ICCD (intensified charge-coupled device) pictures and evaluations of experiments as well as simulations with a fluid discharge model; the simulations use cylindrical symmetry. In the experiments, there is an initial inception cloud phase, where the cylindrical symmetry is maintained, and later a streamer phase, where it is broken spontaneously. At 75-150 mbar, discharges with cylindrical symmetry are not attracted to the dielectric rod, but move away from it. The dielectric rod plays the sole role of an obstacle that shades (in the context of photoionization) a cone-shaped part of the inception cloud; the cone size is determined by the geometry of the setup. The material properties of the dielectric rod, such as its dielectric permittivity and the efficiency of the photon induced secondary electron emission do not have a noticeable effect. This is due to the abundance of photoionization in air, which supplies a positive discharge with free electrons and allows it to propagate along the electric field lines. Using some simple field calculations, w
Magnetic Field Saturation in the Riga Dynamo Experiment
After the dynamo experiment in November 1999 had shown magnetic field
self-excitation in a spiraling liquid metal flow, in a second series of
experiments emphasis was placed on the magnetic field saturation regime as the
next principal step in the dynamo process. The dependence of the strength of
the magnetic field on the rotation rate is studied. Various features of the
saturated magnetic field are outlined and possible saturation mechanisms are
discussed.Comment: 4 pages, 8 figure
Medicinal Plants of Chile: Evaluation of their Anti-Trypanosoma cruzi Activity
San Martin, J (San Martin, Jose). Univ Talca, Inst Biol Vegetal & Biotecnol, Talca, ChileThe extracts of several plants of Central Chile exhibited anti-Trypanosoma cruzi trypomastigotes activity. Most active extracts were those obtained from Podanthus ovatifolius, Berberis microphylla, Kageneckia oblonga, and Drimys winteri. The active extract of Drimys winteri (IC50 51.2 mu g/mL) was purified and three drimane sesquiterpenes were obtained: polygodial, drimenol, and isodrimenin. Isodrimenin and drimenol were found to be active against the trypomastigote form of T cruzi with IC50 values of 27.9 and 25.1 mu M, respectivel
Temperature Dependence of the Flux Line Lattice Transition into Square Symmetry in Superconducting LuNiBC
We have investigated the temperature dependence of the H || c flux line
lattice structural phase transition from square to hexagonal symmetry, in the
tetragonal superconductor LuNi_2B_2C (T_c = 16.6 K). At temperatures below 10 K
the transition onset field, H_2(T), is only weakly temperature dependent. Above
10 K, H_2(T) rises sharply, bending away from the upper critical field. This
contradicts theoretical predictions of H_2(T) merging with the upper critical
field, and suggests that just below the H_c2(T)-curve the flux line lattice
might be hexagonal.Comment: 4 pages, 3 figure
Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification?
Human-assisted, trans-generational exposure to ocean warming and acidification has been proposed as a conservation and/or restoration tool to produce resilient offspring. To improve our understanding of the need for and the efficacy of this approach, we characterized life-history and physiological responses in offspring of the marine polychaete Ophryotrocha labronica exposed to predicted ocean warming (OW: + 3 degrees C), ocean acidification (OA: pH -0.5) and their combination (OWA: + 3 degrees C, pH -0.5), following the exposure of their parents to either control conditions (within-generational exposure) or the same conditions (trans-generational exposure). Trans-generational exposure to OW fully alleviated the negative effects of within-generational exposure to OW on fecundity and egg volume and was accompanied by increased metabolic activity. While within-generational exposure to OA reduced juvenile growth rates and egg volume, trans-generational exposure alleviated the former but could not restore the latter. Surprisingly, exposure to OWA had no negative impacts within-or trans-generationally. Our results highlight the potential for trans-generational laboratory experiments in producing offspring that are resilient to OW and OA. However, trans-generational exposure does not always appear to improve traits and therefore may not be a universally useful tool for all species in the face of global change
- …