
Abstract. Dihydroxyacetone (Dha) kinases are a family
of sequence-conserved enzymes which utilize either ATP
(in animals, plants and eubacteria) or phosphoenolpyru-
vate (PEP, in eubacteria) as their source of high-energy
phosphate. The kinases consist of two domains/subunits:
DhaK, which binds Dha covalently in hemiaminal link-
age to the Ne2 of a histidine, and DhaL, an eight-helix
barrel that contains the nucleotide-binding site. The PEP-
dependent kinases comprise a third subunit, DhaM,
which rephosphorylates in situ the firmly bound ADP
cofactor. DhaM serves as the shuttle for the transfer of
phosphate from the bacterial PEP: carbohydrate phos-
photransferase system (PTS) to the Dha kinase. The DhaL
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and DhaK subunits of the PEP-dependent Escherichia
coli kinase act as coactivator and corepressor of DhaR, a
transcription factor from the AAA+ family of enhancer-
binding proteins. In Gram-positive bacteria genes for ho-
mologs of DhaK and DhaL occur in operons for putative
transcription factors of the TetR and DeoR families. Pro-
teins with the Dha kinase fold can be classified into three
families according to phylogeny and function: Dha ki-
nases, DhaK and DhaL homologs (paralogs) associated
with putative transcription regulators of the TetR and DeoR
families, and proteins with a circularly permuted domain
order that belong to the DegV family.

Keywords. AAA+-ATPase, ADP, coenzyme, glycerone, hemiaminal, phosphoenolpyruvate, phosphotransferase.

Dihydroxyacetone: the substrate

Dihydroxyacetone (Dha) is one of the simplest carbohy-
drates. It consists of only three carbon atoms, is non-chi-
ral and in principle can be formed under prebiotic condi-
tions by spontaneous condensation of three molecules of
formaldehyde. Glyceraldehyde can be formed by tau-
tomerization (hydrogen shift) of Dha, and the two trioses
then can combine by aldol condensation to form sorbose

and fructose [1, 2]. The two hexoses (or hexose phos-
phates under biotic conditions) can serve as precursors
for nearly every sugar that exists in nature (for the struc-
tural formulas of Dha and its reaction partners see Fig. 1).
Solid dihydroxyacetone (C3H6O3, glycerone) exists as a
dimeric hemiketal that in aqueous solution dissociates into
a 4:1 mixture of monomeric ketone and ketone hydrate
(gem-diol) [3]. Dha is chemically reactive like other ketose
sugars but because of its small size cannot react intramol-
ecularly to form cyclic hemiketals. Instead, it reacts inter-
molecularly with proteins and nucleic acids by Maillard-
type cross-linking reactions [4, 5]. Owing to its chemical
reactivity Dha is an important precursor of building blocks
for use in organic synthesis [2] and has many technical ap-
plications. Dha is the active ingredient of sunless tanning
(self-tanning) sprays and lotions [6, 7], and 6-acetyl-
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1,2,3,4-tetrahydropyridine, the product of the ‘Hunter re-
action’ between Dha and L-proline, contributes to the
roasty odour of crackers, popcorn and bread crust [8, 9].
Dha is utilized as a carbon source by bacteria and yeasts,
and there are several pathways by which free Dha is
formed in living cells (Fig. 1). (i) The yeast Schizosac-
charomyces pombe and the bacteria Klebsiella pneu-
moniae and Citrobacter freundii oxidize glycerol with a
soluble NAD+-dependent glycerol dehydrogenase under
anaerobic conditions, and Dha is then phosphorylated by
a Dha kinase [10–13]. (ii) Gluconobacter oxydans and re-
lated bacteria oxidize glycerol with a membrane-bound,
pyrroloquinoline quinone (PQQ)-dependent glycerol de-
hydrogenase that is connected via ubiquinone to a respi-
ratory chain. The oxidation reaction takes place on the
outer face of the membrane, and Dha is released into the
medium [14]. Industrial Gluconobacter strains yield up
to 220 kg/m3 of Dha because the dehydrogenase retains
activity even after irreversible growth inhibition of cells
by Dha [15]. (iii) Methylotrophic yeasts produce Dha
during methanol assimilation. In this pathway, methanol
is first oxidized to formaldehyde. To this one-carbon
compound a two-carbon hydroxyethyl group is then
transferred from xylulose-5-phosphate by Dha-synthase,
a thiamine pyrophosphate-dependent transketolase [16–
21]. Bacteria, for comparison, utilize other routes to as-
similate formaldehyde and its oxidation product CO2,
namely the ribulose monophosphate (RuMP) cycle, the
serine pathway and the reductive pentose phosphate cycle
[21, 22]. None of them produces Dha. Only recently have

the xylulose monophosphate cycle enzymes also been
discovered in a methanol-utilizing carboxydobacterium
[23, 24].
Little is known about the metabolic origin and the fate of
free Dha in higher eukaryotes and plants. Dha and gly-
ceraldehyde may be formed by slow aldol cleavage of ke-
topentoses and ketohexoses or ketose monophosphates
[25, 26] and by the oxidation of glycerol by NAD+-de-
pendent alcohol dehydrogenases and NADPH-dependent
aldehyde reductases [27]. Dha stimulates the secretion of
insulin [28] and is utilized as gluconeogenic precursor by
mammalian tissues [28–32]. Dha and pyruvate have been
claimed to increase muscle mass and aerobic endurance
capacity [33, 34], and Dha thus made its way also into
over-the-counter weight-loss products.

Occurrence and biochemistry of Dha kinases

Dha kinases occur in eubacteria, plants and animals, in-
cluding humans. There exist two different enzymes with
Dha kinase activity: (i) In the narrow sense, Dha kinases
that phosphorylate Dha and D-glyceraldehyde (EC
2.7.1.28 and EC 2.7.1.29). Such kinases consist of a Dha
binding a/b domain and a nucleotide-binding all a-heli-
cal domain. They are the topic of this review. (ii) Glycerol
kinases (EC 2.7.1.30) that consist of two structurally ho-
mologous a/b domains. They have the binding sites for
glycerol and ATP in the cleft between the two domain [35,
36]. Glycerol kinases are less specific, and in addition to
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Figure 1. Metabolic origins of Dha. Alcohol dehydrogenase (ADH) and Dha-synthase are used by methlylotrophic yeast for the assimila-
tion of methanol. Membrane-bound and soluble glycerol dehydrogenases (GDH) occur in bacteria. Aldolases are ubiquitous. The Dha ki-
nases (DAK and DhaKLM) also phosphorylate D-glyceraldehyde and possibly other short-chain ketoses and aldoses (not shown). Glyc-
erol kinase (GK) and glycerol-3-phosphate deyhdrogenase (G3PDH) are an alternative for the conversion of glycerol to dihydroxyacetone
phosphate(DhaP). Triosephosphate isomerase (TIM) interconverts DhaP and glyceraldehyde-3-phosphate (GAP). The rectangular boxes
highlight the carbon bond-forming reactions of Dha. 



glycerol also phosphorylate Dha and glyceraldehyde [37–
40]. The Dha-specific kinases have been characterized in
bacteria [10, 41] and in methylotrophic yeast (for a re-
view see [42–44]). They have been purified from yeasts
[16, 17, 42, 43, 45–49], algae [50], tomato [51], rat brain
[31], porcine kidney [52] and from bacteria, viz. C. fre-
undii [10, 41], K. pneumoniae [13] and E. coli [53].
Dha kinases can be grouped into two structurally related
families (Fig. 2) according to their source of high-energy
phosphate, namely ATP and phosphoenolpyruvate (PEP).
The ATP-dependent kinases occur in yeasts, animals,
plants and eubacteria, the PEP-dependent only in eubac-
teria. The existence of a PEP-dependent kinase was first
noticed by Jin and Lin [54] in an E. coli double mutant
lacking the ATP-dependent glycerol kinase and the
NAD+-dependent glycerol-phosphate dehydrogenase.
While looking for an ATP-dependent Dha kinase, they

observed that an E. coli ptsI mutant, which lacked EI of
the phosphoenolpyruvate:sugar phosphotransferase sys-
tem (PTS; Fig. 2) and therefore did not grow on PTS sug-
ars also no longer grew on Dha (for reviews on the PTS
see [55–57]). They subsequently isolated a transposon
mutant unable to grow on Dha but that grew normally on
PTS sugars. The transposon-tagged gene was mapped to
26 min in the E. coli chromosome, termed ptsD and pro-
posed to encode a Dha-specific enzyme II of the PTS
[58]. However, this putatively membrane-bound PtsD ac-
tivity has never been confirmed biochemically. Instead,
the operon at 26 min on the E. coli chromosome was
found to encode two proteins (DhaK and DhaL) that are
homologous to ATP-dependent Dha kinases, and one
multidomain protein (DhaM) that is homologous to en-
zyme I and HPr, two phosphotransfer proteins of the
PEP:carbohydrate (PTS) [59]. The DhaK and DhaL sub-
units were also found as upregulated protein spots in the
proteome of an E. coli ptsI (EI) mutant [60]. Both find-
ings confirmed that Jin and Lin indeed discovered a Dha
kinase and that this kinase was functionally and geneti-
cally associated with the PTS.
ATP-dependent Dha kinases are single polypeptide two-
domain proteins, while the PEP-dependent forms consist
of three subunits, DhaK, DhaL and DhaM (Fig. 2). DhaK
and DhaL are homologous to the amino terminal K- and
the carboxy terminal L-domain of the ATP-dependent ki-
nases. DhaK contains the binding site for Dha, and DhaL
contains the nucleotide-binding site. DhaM is a phospho-
histidine protein that transfers phosphoryl groups from a
phosphoryl carrier protein of the PTS (HPr or EI) to the
DhaL-ADP complex [53, 61, 62].

Structure and molecular function of Dha kinases

The structures of the ATP-dependent C. freundii Dha ki-
nase (DAK) and of the homologous DhaK subunit of the
E. coli kinase have been solved by X-ray crystallography
[62, 63]. The two kinases assume the same fold but differ
in details (Fig. 3). The structure of the C. freundii DAK
will serve as a frame of reference for the following dis-
cussion. This kinase is a homodimer of two intertwined
subunits. Each subunit consists of two domains (K and
L), which are connected by a 20-residue-long, extended
linker. The domains are swapped such that the amino ter-
minal K-domain of one subunit is complexed with the
carboxy terminal L-domain of the other (Fig. 3a).
The amino terminal K-domain consists of two six-strand-
ed a/b folds that together form a three-layered mixed a/b
sandwich (Figs. 3a, c). The core of the first fold consists
of a four-stranded open pleated sheet with the same topol-
ogy as the IIA subunit of the mannose family of the PTS
transporters [64, 65]. The core of the second fold has a
topology similar to the carboxy terminal domain of the
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Figure 2. Dha kinases and the bacterial phosphoenolpyruvate:sugar
phosphotransferase system (PTS). Center: a PEP-dependent het-
erotrimeric Dha kinase (DhaK, DhaL, DhaM), and an ATP-depen-
dent two-domain Dha kinase. Top: Domain structure of the PTS.
Shown are the core components of the E. coli PTS (EI and HPr)
with two transporters for mannose (IIABMan, IICMan, IIDMan) and
GlcNAc (IICBAGlcNAc). Bottom: Transcription regulators from S.
meliloti consisting of a SorC-DhaK fusion protein and a DhaL-like
subunit. Transcription regulators from L. lactis: DhaQ is a DhaK
paralog; DhaR belongs to the TetR-family of transcription factors.
Domain structure of the DegV protein YfhG (Q9CHY7) of L. lac-
tis. DNA-binding domains/subunits are shown diagonally striped.
Domains homologous to EI and HPr (white), IIA (vertically
striped), DhaL (grey) and DhaK (black) are vertically aligned.
DhaM subunits always have the IIAMan-like domain (vertically
striped) and, depending on the strain, between one and three HPr
and EI-like phosphotransferase domains (white). DhaM of E. coli
has three domains (IIAMan-, EI, and HPr-like). Active site His and
Cys are indicated as circles and squares. Arrows indicate the phos-
phoryl flow from the core PTS proteins (EI and HPr), to the the
PEP-dependent carbohydrate transporters and the PEP-dependent
Dha kinases. The ‘?’ indicates that the ligands are not known. Pro-
teins of unknown function are identified by their Swiss-Prot acces-
sion numbers.



cell division protein FtsZ. The K-domain provides the
dimerization interface consisting of two pairs of helices.
The substrate, Dha, is bound covalently in hemiaminal
linkage to the K-domain (Fig. 4a). The C-N bond is form-
ed between the carbonyl carbon of Dha and the imidazole
ring (Ne2) of His-220, and the hemiaminal is stabilized
by a hydrogen bond between the geminal hydroxyl group
and Ne2 of His-61. Dha is oriented by additional hydro-
gen bonds extending from the C1- and C3-hydroxyl groups
of Dha to the g-carboxyl group of Asp-114 and to the
main chain amide of Gly-59. There is no evidence for a
role of the hemiaminal in covalent catalysis [66]. Rather,

hemiaminal formation is a ‘clever strategy’ to discrimi-
nate between a short-chain carbonyl compound (Dha or
glyceraldehyde) that can form a hemiaminal and the isos-
teric alcohol (glycerol) that cannot form such a covalent
bond. The E. coli Dha kinase, in fact, is not inhibited even
by as high as 2 M glycerol [66].
The carboxy terminal L-domain of the C. freundii DAK
(Fig. 3a) consists of an eight-stranded a-helical barrel of
regular up-down topology [62] with the nucleotide-bind-
ing site in a shallow depression at the narrow end of the
barrel. This fold is novel and unlike any other kinase with
known structure (for reviews see [67, 68]). The hydro-
phobic interior of the barrel is filled with a phospholipid
molecule which was retained during all purification
steps. The lipid headgroup protrudes from the wider end
of the barrel, where it is accessible to phospholipase D,
and the lipid can be removed with a mild detergent. De-
tergent-washed Dha kinase remains active, suggesting
that the lipid plays no role in catalysis but may stabilize
the structure of the barrel. The four helix-connecting
loops at the narrow end of the barrel form the side wall of
the ATP-binding site. The first and second loops embrace
the phosphate groups of ATP, the third contacts the ade-
nine base. The fourth loop, which is disordered in the C.
freundii structure, most likely forms a flexible cap over
the binding site. The three phosphate groups of ATP are
coordinated by two Mg2+ ions, which in turn are com-
plexed by three g-carboxylates from aspartates in the first
loop (Fig. 4b). This novel ATP-binding site differs in two
aspects from those of other nucleotide-binding proteins
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Figure 3. Structure of the Dha kinase from C. freundii (a) and
E. coli (b). Cartoon representation of the Dha kinase dimers. The
subunits of the dimers are coloured in blue/green and grey and the
DhaL domains in cyan. The a-helices of the first and second DhaK
subdomain are coloured in blue and green, respectively, b-sheets in
yellow. The active site His (red sticks) of DhaK with Dha (spheres)
are shown. The nucleotide (AMPPNP, grey), the two Mg2+ ions
(green) bound to the DhaL-domain, and the phosphatidic acid mol-
ecule which occupies the interior of helix-barrel (orange) are shown
as spheres. The b-hairpin of E. coli DhaK is shown in red. A loop
which is ordered in the C. freundii DhaK domain and disordered in
the E. coli DhaK subunit is shown in red. (c) Topological diagrams
of the Dha-binding DhaK subunit and of the fatty-acid binding
TM841 subunit are coloured as in a and b. Circles represent a-he-
lices, triangles b-strands pointing away (up) and towards (down) the
viewer. The b-hairpin in E. coli DhaK and extra secondary structure
elements of TM841 are shown in red. The IIA and FtsZ core folds
are boxed. PDB accession codes: C. freundii 1UN9; E. coli, 1OI2;
TM841, 1MGP.

Figure 4. Ligand-protein interactions. (a) Structure of the hemi-
aminal between Dha and Ne2 of histidine, and hydrogen bonds to
invariant His and Asp. (b) Hydrogen- and metal-binding interac-
tions between ATP and conserved residues of the nucleotide bind-
ing site [62]. Numbers refer to residues of the C. freundii kinase,
numbers in parenthesis to the E. coli kinase. H38 is invariant in the
DhaL subunits of PEP-dependent kinases, T388 is conserved in
most ATP-dependent kinases.



and protein kinases [69, 70]. First, the four loops are cen-
tred between a-helices and not in b-hairpins or b-a loops.
And second, the loops do not contain aromatic residue or
carboxy terminal lysines, which in the other ATP-binding
proteins are in contact with the nucleotide.
The binding sites for Dha and ATP are 14 Å apart in the
crystal structure (Fig. 3a) and it is not clear how they re-
orient for in-line phosphoryltransfer. One way of bring-
ing ATP and Dha together is that the two domains are
freely mobile in solution [62]. Another possibility is tilt-
ing of the nucleotide-binding site by a shear deformation
of the helix bundle along the barrel axis combined with
the elliptical compression of the barrel in the direction of
the K-domain.
The DhaK subunit of the PEP-dependent E. coli Dha ki-
nase assumes the same fold as the C. freundii counterpart
[63]. The only obvious difference is a b-ribbon of 25 res-
idues inserted in the carboxy terminal subdomain of E.
coli DhaK. The b-ribbon folds back to cap the edge of the
b-sheet in the amino terminal a/b fold (Fig. 3b). It has
been proposed that b-ribbons prevent the association be-
tween hydrophobic edge strands and concomitant protein
aggregation [71, 72]. The b-ribbon is present only in a
small subgroup of PEP-dependent Dha kinases, which
utilize large multidomain DhaM subunits as phosphoryl-
group donors (see below).
The E. coli DhaL subunit is expected to assume the same
fold as the L-domain of DAK (Fig. 3a). DhaL also binds
a nucleotide, which, however, is retained during all pu-
rification steps. The exchange half-life of ADP in com-
plex with DhaL is 100 min, five times the generation-time
of a fast growing E. coli! And the removal of the nu-
cleotide by sequestration of Mg2+ with EDTA reduces the
thermal unfolding temperature of DhaL from 65 to 40 °C
[61]. ADP is not exchanged for ATP in E. coli DhaL – un-
like in any other kinase with known function – but is
rephosphorylated in situ by the DhaM subunit. The nu-
cleotide no longer is a substrate of DhaL but a coenzyme
with the function of a phosphoryl group binding amino
acid. This conversion of a substrate-binding site into a co-
factor-binding site is a remarkable example of functional
evolution [61].
DhaM is the third subunit of PEP-dependent Dha kinases
[53]. In most species DhaM consists of a single domain
that is homologous to the amino terminal domain of the
IIABMan subunit of the E. coli mannose transporter [64,
73, 74]. Occasionally and as shown below, DhaM con-
tains additional domains similar to the phosphotrans-
ferase subunits HPr and enzyme I of the PTS [64, 73, 74].

Control of dha operon transcription by Dha kinases

DhaK and DhaL homologs also occur in operons for pu-
tative transcription factors. These operons are adjacent

and often divergently oriented to bona fide dha operons
suggesting that they control Dha kinase expression. The
molecular mechanisms by which Dha kinase subunits
function as coactivators of transcription has been eluci-
dated in E. coli (Fig. 5). Genetic and biochemical studies
showed that the dha operon is controlled by DhaR and the
two kinase subunits DhaK and DhaL [60, 75]. DhaR be-
longs to the family of enhancer-binding proteins (EBPs)
that activate the sigma RNA polymerase complex by di-
rect contact and by causing DNA looping [76–78]. EBPs
usually consist of three domains, a DNA-binding, a
AAA+ ATPase and a receiver domain for low-molecular
and protein ligands. E. coli DhaR stimulates the tran-
scription of the dha operon from a s70 promoter and au-
torepresses transcription of the dhaR gene. DhaK and
DhaL antagonistically act as corepressor and coactivator
of DhaR (Fig. 5). In the presence of Dha, when the phos-
phoryl group is transferred from DhaL::ATP to Dha, the
now dephosphorylated DhaL::ADP binds to the DhaR re-
ceiver domain and activates the expression of the dha
operon. In the absence of Dha, DhaL::ADP is rephospho-
rylated by DhaM to DhaL::ATP, which does not bind
to DhaR. If DhaM or EI are inactivated by a mutation
DhaL::ADP remains in the dephosphorylated state and
the dha operon is expressed constitutively [60, 75]. DhaK
competes with DhaL for binding to DhaR and thus tunes
down the effect of DhaL::ADP. Therefore transcription of
the dha operon overshoots when DhaK and DhaM or
DhaK and EI are inactivated together [60, 75]. The nov-
elty of this mechanism is (i) the formation of a complex
between a transcription factor and two enzyme subunits
and (ii) the coupling of transcription activation with
turnover and not only binding of the substrate. The dou-
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Figure 5. Model of Dha kinase mediated transcription control.
E. coli DhaR (diagonally striped), the activator of the dhaKLM
operon, consists of a receiver domain, an AAA+-ATPase domain
and a DNA-binding helix-turn-helix domain. DhaL::ADP (grey)
is the coactivator of DhaR, DhaK (black) an antagonist of
DhaL::ADP. By binding to DhaK, the inducer Dha reduces the
affinity of DhaK for DhaR. By dephosphorylation of DhaL::ATP,
Dha increases the affinity of DhaL::ADP for DhaR. The s70 initi-
ation factor that directs the RNA polymerase to the promoter site
and the RNA polymerase are not shown. The dhaR gene is diver-
gently transcribed from a constitutively active promoter which in
E. coli is repressed by DhaR [75]. 



ble-check for binding and turnover may increase the se-
lectivity and the sensitivity of control [75]. It is not known
whether the DhaL-DhaR complex acts directly by allo-
steric activation of the s initiation factor and the RNA
polymerase or indirectly by DNA bending. 
In Lactococcus lactis an operon for a DhaK homolog
(Swiss-Prot entry Q9CIW0), and a protein (Q9CIV9) with
the predicted fold of a tetracyclin repressor [79] is found
next to the bona fide dha operon. In Sinorhizobium meliloti
an operon for a homolog of DhaL (Q92WN5) and a two-
domain protein, Q92WN4, follow the genes for bona fide
DhaK (Q92WN2) and DhaL (Q92WN3) subunits. The
amino terminal domain of Q92WN4 has 27% sequence
identity with SorC (P37078), the regulator of the L-sorbose
operon of K. pneumonia, and with DeoR (P39140), the
regulator of the deoxyribonucleoside and deoxyribose uti-
lization operon dra-nupC-pdp of Bacillus subtilis. The car-
boxy terminal DhaK-like domain of Q92WN4 has 41%
sequence identity with the S. meliloti DhaK (Q92WN2)
subunit, and the DhaL paralogs (Q92WN5 and Q92WN3)
share 33% sequence identity. It is not known how these
transcription regulators function or what the role of the as-
sociated kinase subunits may be.

Distribution and phylogeny of Dha kinases

A protein-protein BLAST (blastp at NCBI) with DhaK
(DhaL) of E. coli as the input generated 169 (161) hits
from 115 (117) bacterial species and 70 (56) hits from
39 (34) eukaryotes. With the single-domain DhaM
(Q9CIV6) of L. lactis as input, the output contained 87
hits from 78 bacterial species and none from eukaryotes.
60 hits from bacterial and eukaryotic species were se-
lected for closer inspection and classified into three fam-
ilies (1–3) according to the organization of the operon,
the subunit composition of the gene product (Fig. 6), the
phylogenetic relationship (Fig. 7) and the predicted func-
tion: (i) Dha kinases, (ii) DhaK and DhaL homologs (par-
alogs) associated with putative transcription regulators
and (iii) proteins of unknown function with circularly
permuted domain order.
The kinase family (i) can be further divided into four
groups (a–d, Figs. 6 and 7): (a) Single-subunit ATP-de-
pendent Dha kinases like the C. freundii kinase described
above. This group also includes all Dha kinases of yeasts,
plants and animals (EC 2.7.1.28) and the triokinases (EC
2.7.1.29), which were defined based on their specificity
for glyceraldehyde but probably are not an enzyme class
of their own. The C. freundii kinase displays more se-
quence identity (40%) with human than with the yeast
(Pichia pastoris) kinases (30%). Altogether the yeast ki-
nases form a large, separate branch within group A,
which for lack of space has been omitted from Figure 7.
(b) PEP-dependent Dha kinases that consist of DhaK,

DhaL and a ‘small’ single-domain DhaM subunits. They
form the largest group of bacterial Dha kinases. (c) PEP-
dependent Dha kinases that contain ‘large’ multidomain
DhaMs. Their DhaMs contain in addition to the obliga-
tory IIAMan-like domain additional domains similar to
HPr and enzyme I (EI) of the PTS (Fig. 6). Two-domain
(IIA-HPr) DhaMs occur in some Actinobacteria [Coryne-
bacterium diphtheriae (Q6NED9)], three-domain (IIA-
HPr-EI(N) DhaMs in E. coli, and four-domain [IIA-HPr-
EI(N)-EI(C)] DhaMs with full-length (PEP-binding) EI in
Desulvofibrio vulgaris (Q72DE8) and some other strains
of the d and g subdivision of proteobacteria. It is note-
worthy that all the b-hairpin-containing DhaKs (Fig. 3b)
are associated with such three- and four-domain DhaMs.
(d) The fourth group contains two types of Dha kinases:
(i) Two-subunit kinases (DhaK and DhaL) encoded by
discistronic operons without a gene for a DhaM subunit.
Their DhaLs have an invariant histidine in loop 1 of the
nucleotide-binding site (LGDGDHG, Fig. 4b) like the
PEP-dependent kinases of groups B and C. (ii) Kinases
that by their domain architecture resemble ATP-depen-
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Figure 6. Structures of dha operons. (a) Genes for ATP-dependent
Dha kinases with and without divergently transcribed genes for
DhaR. (b) Genes for PEP-dependent kinases with and without
genes for Tet-R-like (dhaR) and DhaK-like (dhaQ) transcription
regulators. (c) PEP-dependent Dha kinases with large multidomain
DhaM subunits and genes for EI and HPr of the PTS. The M. loti lo-
cus contains genes for PTS- and ATP-dependent kinases. (d) Oper-
ons for Dha kinases without a DhaM subunit and associated tran-
scription regulators of the SorC/DeoR-type. The domains/subunits
and their colours are: DhaK (green), DhaL (cyan), DhaM IIA-do-
main (blue), PTS domains (orange), DNA-binding proteins (black),
DhaK-like (dhaQ; green striped). DH refers to dehydrogenase, glpF
to glycerol facilitator. The labels a–d refer to the clusters in the
comparative tree (Fig. 7). For abbreviations, see Fig. 7.
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Figure 7. Phylogenetic tree of Dha kinases. DhaK and DhaL subunits encoded in an operon were treated as a unit. DAK refers to two-do-
main Dha kinases, DHBK to 3,4-dihydroxy-2-butanone kinase [51], KL to two-subunit Dha kinases without a DhaM subunit and KLM
to three subunit kinases. M indicates single-domain (IIA) DhaM subunits, MH two-domain (IIA-HPr), MHi three-domain [IIA-HPr-EI(N)]
and MHI four-domain [IIA-HPr-EI(N)-EI(C)] DhaM subunits. PTS indicates that genes for PTS proteins (EI and HPr) are associated with
the dha operon as shown in Figure 6. G (DhaR,TetR-like), Q (DhaK-like), R (AAA+), S (SorC-like) and L (DhaL-like) indicate that
transcription factors are associated with the dha operon as shown in Figure 6. X,Y and ? refer to genes of unknown function. Numbers after
the species abbreviation indicate that their genomes encode more than one Dha kinase. Bar, 0.1 replacement per position. The se-
quences were aligned with the program MULTALIGN (www.toulouse.inra.fr/multalin.html) [93] and clustered with TREETOP
(www.genebee.msu.su/services/phtree_full.html) [94] with alignment parameters set to default values. The species abbreviations are:
Leishmania (LEIMA); Caenorhabiditis (CAE); Arabidopsis (ARATH); tomato (LYCES); rice (ORYSA); Agrobacterium tumfaciens
(agrtu); Bacillus anthracis (bacan); Bacillus halodurans (bacha); Bacillus clausii (baccl); Bacillus stearothermophilus (bacst); Bradyrhi-
zobium japonicum (braja); Brucella suis (brusi); Burkholderia pseudomallei (burps); Chloroflexus aurantiacus (chlau); Chromohalobac-
ter salexigens (chrsa); Citrobacter freundii (citfr); Clostridium perfringens (clope); Clostridium botulinum (clobo); Clostridium tetani
(clote); Corynebacterium diphtheriae (cordi); Deinococcus radiodurans (deira); Desulfovibrio vulgaris (desvu); Erwinia carotovora
(erwct); Escherichia coli K1 genetic island (GimA); Escherichia coli K12 (ecoli); Escherichia blattae (escbl); Enterococcus faecalis
(entfa); Enterococcus faecium (entfm); Fusobacterium nucleatum (fusnu); Gluconobacter oxidans (gluox); Klebsiella pneumoniae (klepn);
Lactococcus lactis (lacla); Lactococcus plantarum (lacpl); Listeria monocytogenes (lismo); Pasteurella multocida (pasmu); Photobac-
terium profundum (phopr); Mesorhizobium loti (meslo); Methylococcus capsulatus (metca); Mycoplasma penetrans (mycpe); Mycobac-
terium smegmatis (mycsm); Nostoc punctiforme (nospu); Oceanobacillus iheyensis (oceih); Rhizobium meliloti (rhime); Rhizobium sp.
(rhizn); Selonomonas ruminantium (selru); Sinorhizobium meliloti (sinme); Staphylococcus aureus (staau); Staphylococcus epidermidis
(staep); Streptomyces coelicolor (strco); Streptococcus agalactiae (strag); Streptococcus pyogenes (strpy); Thermoanaerobacter tengcon-
gensis (thete); Treponema denticola (trede); Vibrio parahaemolyticus (vibpa); Yersinia enterocolitica (yeren); Yersinia pestis (yerpe).



dent kinases, but which by their sequence are more simi-
lar to the PEP-dependent forms. The bacterial strains en-
coding such ‘incomplete’ Dha kinases often also contain
only a reduced PTS with genes for homologs of EI, HPr
and IIA proteins [80] but not for carbohydrate trans-
porters (enzymes II). The function of these incomplete ki-
nases and whether other IIA-like proteins can comple-
ment the missing DhaMs is not known.
The second family of DhaK and DhaL paralogs associ-
ated with transcription regulators (DhaRs) of the TetR
and DeoR families has been described above. They form a
small branch of their own within the D group (not shown
in Figure 7). The ‘regulatory’ orthologs (termed DhaQ)
from different strains are more closely related to each
other (50–65% sequence identity) than to the catalytic
DhaK paralogs (identity 40–45%). It thus appears that the
duplication and the functional diversification of the an-
cestral dhaK gene preceded the evolutionary separation
of the modern carriers of these paralogous genes.
The third family comprises the DegV-like proteins (Pfam
accession number 02645), whose function is not known.
They have a circularly permuted domain order. The fold
of the amino terminal domain is similar to DhaL. The fold
of the carboxy terminal domain is similar to the fatty acid
binding protein TM841 of Thermotoga maritima (PDB
code 1MGP [81]), and TM841 in turn shares the core fold
with DhaK [62, 63], as shown in the topological diagrams
of Figure 3c. The difference between DhaK and TM841
lies in two extra secondary structure elements and in the
chemistry of their ligand binding sites. TM841 and – by
prediction – the carboxy terminal domains of DegV pro-
teins have an extra a/b fold inserted between b2 and a2
of the core, while DhaK has two extra b-strands and one
a-helix (a dimerization helix) appended to the amino ter-
minus. The ligands, Dha in DhaK and a fatty acid in
TM841, occupy the same binding pocket and are both hy-
drogen bonded to the first topological switch point of the
amino terminal a/b subdomain. The residues, involved in
ligand binding are, however, different. It is not known
whether the DhaL-like domain of DegV proteins has ki-
nase activity or what the substrate and molecular function
of the DhaK-like domain might be.

Biological function of Dha kinases 
and open questions

While the structure and molecular function of the PEP-
dependent E. coli Dha kinase and of the ATP-dependent
C. freundii kinase are reasonably well understood, much
less is known about the physiological role of Dha kinases
in living cells. Two well-characterized functions, namely
(i) catabolism of glycerol and (ii) methanol assimilation
(methylotrophy), have been described above (Fig. 1). Two
additional functions (iii) detoxification (chemical stress

response) and (iv) control of gene expression will be dis-
cussed in this section. Glyceraldehyde and Dha can cross-
link proteins and by autooxidation produce superoxide
radicals [82, 83], and Dha has been shown to enhance the
mutation rate in SOD-deficient E. coli [84–86]. Molin et
al. [87] demonstrated that Dha is toxic to Saccharomyces
cerevisiae and that detoxification is dependent on a func-
tional Dha kinase. Deletion of the two genes for Dak1p
and Dak2p made cells hypersensitive, while overexpres-
sion made them more tolerant to Dha. Dha toxicity was
dependent on cosubstrates and salt conditions, which led
to the proposition that detoxification of Dha might be a
part of the physiological response to Dha-dependent
stress conditions. It is therefore reasonable to assume that
Dha kinases clean up the short-chain carbonyl com-
pounds that may be formed as side products of the carbo-
hydrate metabolism (aldol cleavage of ketohexoses and
ketopentoses or oxidation of glycerol). The rate of Dha
formation by non-specific oxidation may be increased in
organisms that under osmotic stress accumulate glycerol
in high concentrations [88, 89]. Owing to hemiaminal
formation, Dha kinases can remove traces of Dha even in
the presence of an excess of glycerol [66], which glycerol
kinases, for comparison, cannot.
The substrate spectrum of some ‘Dha kinases’ may be
broader than suggested by most of the published reports.
A recent and unexpected finding is that FMN-cyclase, an
enzyme that catalyses the formation of cyclic FMN (ri-
boflavin 4¢,5¢-cyclic phosphate) from FAD, is identical
with the human Dha kinase (SWISS-Prot Q3LXA3,
Q9BVA7) [90]. Cyclase and kinase activity were copuri-
fied from rat liver extracts as well as with the human re-
combinant protein. Kinase activity was six times stronger
than cyclase activity, but FAD, ATP and Dha were mutu-
ally competitive inhibitors [90]. While the ADP moiety of
FAD in principle can be accommodated in the nucleotide
binding site, it is not clear at all how the riboflavin moi-
ety can bind to the L- or K-domain.
The physiological role of Dha kinases in transcription
control is still far from understood. One answer may be
found in bacteria that contain both a PEP-dependent and
an ATP-dependent kinase, for instance Escherichia blat-
tae [91], K. pneumoniae, Streptomyces coelicolor and
probably also C. freundii. DhaR of E. coli controls not
only the expression of the E. coli but also of the C. freundii
kinase [75], suggesting that the PEP-dependent form
functions as ‘sensor kinase’ for the control of the ATP-de-
pendent ‘metabolic kinase’. A further hint that this sensor
kinase may also control other biological processes is pro-
vided by the 20-kb genetic island of meningitic E. coli K1
(GimA) [92]. This island contains among others the ibeA
virulence gene (invasin) that contributes to the pathogen-
esis of E. coli meningitis, three genes for a PEP-dependent
Dha kinase (ptnC, ptnK, ptnP) and the gene ibeR for a ho-
molog of the E. coli DhaR. Of all the potential promoter/
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operator sequences on GimA, the putative promoters of
ibeA (Q9FCY5) and ptnC (Q8VP37) display the strongest
similarity to the promoter/operator region of the E. coli
dha operon [75]. It is therefore possible that IbeR controls
the ibeA virulence gene and that the PEP-dependent Dha
kinase serves as the sensor for an environmental stimulus
at the blood-brain barrier. However, this hypothesis has
not yet been tested.
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