144 research outputs found

    Spatiotemporal modelling and mapping of the bubonic plague epidemic in India

    Get PDF
    BACKGROUND: This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. RESULTS: Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. CONCLUSION: Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases

    Sampling and Kriging Spatial Means: Efficiency and Conditions

    Get PDF
    Sampling and estimation of geographical attributes that vary across space (e.g., area temperature, urban pollution level, provincial cultivated land, regional population mortality and state agricultural production) are common yet important constituents of many real-world applications. Spatial attribute estimation and the associated accuracy depend on the available sampling design and statistical inference modelling. In the present work, our concern is areal attribute estimation, in which the spatial sampling and Kriging means are compared in terms of mean values, variances of mean values, comparative efficiencies and underlying conditions. Both the theoretical analysis and the empirical study show that the mean Kriging technique outperforms other commonly-used techniques. Estimation techniques that account for spatial correlation (dependence) are more efficient than those that do not, whereas the comparative efficiencies of the various methods change with surface features. The mean Kriging technique can be applied to other spatially distributed attributes, as well

    Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast

    Get PDF
    The necessity to reduce CO2 emissions in combination with the rising energy demand worldwide makes the extensive use of renewable energy sources increasingly important. To that end, countries with long coastlines, such as Norway, can exploit ocean wave energy to produce large amounts of power. In order to facilitate these efforts as well as to provide quantitative data on the wave energy potential of a specific area, it is essential to analyze the weather and climatic conditions detecting any variabilities. The complex physical processes and the atmosphere-wave synergetic effects make the investigation of temporal variability of wave energy a challenging issue. This work aims to shed new light on potential wave energy mapping, presenting a spatio-temporal assessment of swell- and wind-sea-induced energy flux in the Nordic Seas with a focus on the Norwegian coastline using the NORA10 hindcast for the period 1958–2017 (59 years). The results indicate high spatial and seasonal variability of the wave energy flux along the coast. The maximum wave energy flux is observed during winter, while the minimum is observed during summer. The highest coastal wave energy flux is observed in the Norwegian Sea. The majority of areas with dominant swell conditions (i.e., in the Norwegian Sea) are characterized by the highest coastal wave energy flux. The maximum values of wave energy flux in the North Sea are denoted in its northern parts in the intersection with the Norwegian Sea. In contrast to the Norwegian Sea, areas located in the North Sea and the Barents Sea show that wind sea is contributing more than swell to the total wave energy flux.publishedVersio

    Stochastic Flowpath Analysis of Multiphase Flow in Random Porous Media

    Get PDF
    Multiphase flow in random porous media is studied by means of a stochastic flowpath approach, which is built upon concepts of differential geometry. This approach replaces the partial differential equations of flow by a set of ordinary differential equations along the flowpaths. Geometrical characterization of multiphase flow involves space transformations. The stochastic flowpath approach accounts for heterogeneity and allows for random initial or boundary conditions. It does not require perturbative approximations, and it does not involve Green's functions. The differential geometric formulation involves tracking the flowpath trajectories of the different phases within the flow domain. We discuss the solution of the two-phase flow equation within a random permeability medium by numerical simulation

    Model-Driven Development of Covariances for Spatiotemporal Environmental Health Assessment

    Get PDF
    Abstract Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across spacetime. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy (BME) theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country

    Computational Bayesian maximum entropy solution of a stochastic advection-reaction equation in the light of site-specific information

    Get PDF
    This work presents a computational formulation of the Bayesian maximum entropy (BME) approach to solve a stochastic partial differential equation (PDE) representing the advection-reaction process across space and time. The solution approach provided by BME has some important features that distinguish it from most standard stochastic PDE techniques. In addition to the physical law, the BME solution can assimilate other sources of general and site-specific knowledge, including multiple-point nonlinear space/time statistics, hard measurements, and various forms of uncertain (soft) information. There is no need to explicitly solve the moment equations of the advection-reaction law since BME allows the information contained in them to consolidate within the general knowledge base at the structural (prior) stage of the analysis. No restrictions are posed on the shape of the underlying probability distributions or the space/time pattern of the contaminant process. Solutions of nonlinear systems of equations are obtained in four space/time dimensions and efficient computational schemes are introduced to cope with complexity. The BME solution at the prior stage is in excellent agreement with the exact analytical solution obtained in a controlled environment for comparison purposes. The prior solution is further improved at the integration (posterior) BME stage by assimilating uncertain information at the data points as well as at the solution grid nodes themselves, thus leading to the final solution of the advection-reaction law in the form of the probability distribution of possible concentration values at each space/time grid node. This is the most complete way of describing a stochastic solution and provides considerable flexibility concerning the choice of the concentration realization that is more representative of the physical situation. Numerical experiments demonstrated a high solution accuracy of the computational BME approach. The BME approach can benefit from the use of parallel processing (the relevant systems of equations can be processed simultaneously at each grid node and multiple integrals calculations can be accelerated significantly, etc.)

    BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

    Get PDF
    BackgroundLong-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors.ObjectiveWe developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study.MethodWe used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time.ResultsCompared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden.ConclusionBME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable

    Area Disease Estimation Based on Sentinel Hospital Records

    Get PDF
    BACKGROUND: Population health attributes (such as disease incidence and prevalence) are often estimated using sentinel hospital records, which are subject to multiple sources of uncertainty. When applied to these health attributes, commonly used biased estimation techniques can lead to false conclusions and ineffective disease intervention and control. Although some estimators can account for measurement error (in the form of white noise, usually after de-trending), most mainstream health statistics techniques cannot generate unbiased and minimum error variance estimates when the available data are biased. METHODS AND FINDINGS: A new technique, called the Biased Sample Hospital-based Area Disease Estimation (B-SHADE), is introduced that generates space-time population disease estimates using biased hospital records. The effectiveness of the technique is empirically evaluated in terms of hospital records of disease incidence (for hand-foot-mouth disease and fever syndrome cases) in Shanghai (China) during a two-year period. The B-SHADE technique uses a weighted summation of sentinel hospital records to derive unbiased and minimum error variance estimates of area incidence. The calculation of these weights is the outcome of a process that combines: the available space-time information; a rigorous assessment of both, the horizontal relationships between hospital records and the vertical links between each hospital's records and the overall disease situation in the region. In this way, the representativeness of the sentinel hospital records was improved, the possible biases of these records were corrected, and the generated area incidence estimates were best linear unbiased estimates (BLUE). Using the same hospital records, the performance of the B-SHADE technique was compared against two mainstream estimators. CONCLUSIONS: The B-SHADE technique involves a hospital network-based model that blends the optimal estimation features of the Block Kriging method and the sample bias correction efficiency of the ratio estimator method. In this way, B-SHADE can overcome the limitations of both methods: Block Kriging's inadequacy concerning the correction of sample bias and spatial clustering; and the ratio estimator's limitation as regards error minimization. The generality of the B-SHADE technique is further demonstrated by the fact that it reduces to Block Kriging in the case of unbiased samples; to ratio estimator if there is no correlation between hospitals; and to simple statistic if the hospital records are neither biased nor space-time correlated. In addition to the theoretical advantages of the B-SHADE technique over the two other methods above, two real world case studies (hand-foot-mouth disease and fever syndrome cases) demonstrated its empirical superiority, as well
    corecore