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Abstract. Multiphase flow in random porous media is studied by means of a stochastic flowpath
approach, which is built upon concepts of differential geometry. This approach replaces the partial
differential equations of flow by a set of ordinary differential equations along the flowpaths. Geo-
metrical characterization of multiphase flow involves space transformations. The stochastic flowpath
approach accounts for heterogeneity and allows for random initial or boundary conditions. It does
not require perturbative approximations, and it does not involve Green’s functions. The differential
geometric formulation involves tracking the flowpath trajectories of the different phases within the
flow domain. We discuss the solution of the two-phase flow equation within a random permeability
medium by numerical simulation.
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1. Introduction. One of the most challenging problems of flow modeling in
porous media is the solution of the partial differential equations (PDEs) governing
multiphase flow [1], [2], [3], [4]. The main limiting factors in this problem are the het-
erogeneity of the flow parameters, the coupling of the flow equations for the different
phases, and the nonlinearity of the constitutive relations. In addition, laboratory ex-
periments are not sufficient for an understanding of the heterogeneities that influence
flow at the field scale. Finally, field-scale simulators require averaging of the fluid
properties within grid blocks of considerable sizes, thus implying an additional level
of approximation [5], [6].

In light of the above considerations, both analytical and numerical treatments of
the multiphase flow equations are faced with serious complications. In the case of
analytical solutions, these complications include singular Green’s functions, compli-
cated boundary or initial conditions, and spatially or temporally variable inputs [7],
[8]. Most numerical methods introduce approximations and simplifications, the sig-
nificance of which is not always clear or well justified, they are usually very expensive
to implement for two- and three-dimensional domains, and often they do not provide
a deeper understanding of the physical mechanisms [9], [10], [11].

An important aspect of multiphase flow in porous media is the inherent random-
ness that is evident in both the geometric structure of the porous formation and the
fluid flow patterns [12]. Deterministic approaches (analytical and numerical) are not
sufficient in this case (although they can be used to investigate individual realizations),
but stochastic methods can incorporate randomness into multiphase flow modeling.
Thus, they account for the lack of a complete characterization of heterogeneity (due
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to practically finite number of measurements) and provide estimates of the level of
uncertainty involved in porous media characterization [3], [12], [13]. In the stochastic
context, multiphase flow equations can be studied (a) by means of simulation methods
that generate an ensemble of random field realizations [14], [15] and (b) in terms of
low-order perturbation expansions of the corresponding statistical moments [16].

The macroscopic equations of flow in heterogeneous porous media are obtained
by means of the representative elementary volume (REV) and the homogenization
approach [17]. In the case of single-phase flow it can be shown rigorously that Darcy’s
law is obtained from the microscopic Stokes equations by means of the homogenization
approach [18]. The same techniques can be used in the case of two-phase flow [19]
but, due to the complexities of the two-phase system, the derivation of macroscopic
laws is based on heuristic arguments. Macroscopic equations for two-phase flow in
randomly heterogeneous media have also been obtained by the approach of stochastic
homogenization [20].

This work is concerned with a stochastic flowpath (SFP) method for studying
multiphase flow of immiscible fluids. Multiphase flow is governed by PDEs, in which
the physical quantities are represented by means of random fields. The SFP method
formulates the multiphase flow problem in terms of ordinary differential equations
(ODEs) using concepts from differential geometry. The flow variables are determined
by solving ODEs along the flowpaths, the trajectories of which are determined self-
consistently by the flow equations. The SFP method incorporates the natural het-
erogeneity of flow in porous media, and it allows for randomness in the initial and
boundary conditions. In addition, it does not require the approximations of perturba-
tion methods, and it does not involve Green’s functions. The second-order differential
flowpath equations (see (11) below) satisfied by each phase are similar to the equa-
tions of two-point seismic-ray tracing in an isotropic heterogeneous medium [21], [33].
The seismic-ray tracing problem has been solved in [21] by transforming the equations
into a system of first-order ODEs in an expanded space and using a finite difference
scheme. In the case of the two-phase problem, the equations are further complicated
by the presence of the gravitational term and the coupling of the two phases by means
of the nonlinear relative permeability relations.

While our method bears some resemblance to the streamtube [22] and streamline
[23], [24] approaches for solving multiphase flow equations, it differs from them in
certain important ways. These approaches, which are very efficient computationally,
provide numerical solutions for the multiphase system assuming fractional flow con-
ditions. In this case the capillary pressure is ignored, thus leading to equations for
fractional flow variables which depend only on the saturation of the respective phase
[25]. In contrast, the SFP approach proposed here does not neglect the capillary
pressure. The streamtube and streamline simulators achieve additional improvements
in computational efficiency by ignoring the gravitational force and assuming uni-
form initial conditions. These assumptions permit mapping analytical solutions along
streamlines, using the explicit Buckley–Leverett expressions [25], [39]. Since our ap-
proach determines the flowpaths numerically, it admits nonuniform initial conditions.
In addition, the streamline method calculates a single streamline corresponding to
the total velocity operator and then solves the balance equations for each phase along
this streamline. The SFP approach, on the other hand, focuses on calculating the
flowpaths for all phases.

2. Steady-state two-phase flow. We study multiphase flow of two immisci-
ble and incompressible fluids within a heterogeneous porous medium, the physical
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variables of which are represented by means of stochastically homogeneous random
fields [26]. In addition, we consider only strong mixing random fields with finite cor-
relation lengths. The permeability sample functions are assumed to be continuous
and differentiable. Furthermore, permeability fields that are nonzero everywhere are
considered. The last condition is satisfied by log-normal permeability distributions
that are often used to model intrinsic permeability. Mathematical formulations based
on the log-permeability of the porous medium are commonly used for single-phase
flow [27] and multiphase flow [28] as well. The flow equations for the phases under
steady-state conditions follow from the local Darcy’s law for each phase [19] and the
incompressibility condition ∇·qα(s) = 0 [3], where the subscript α is the phase index
and qα is the flow vector of the phase α. The incompressibility condition can be
expressed as follows:

∇ · ja(s) + ∇ ln
Ka(s)

µa
· ja(s) = 0,(1)

where s = (s1, s2, s3) denotes a point within the flow domain. The piezometric
pressure gradient ja is given by

ja(s) = −∇pa(s) − ρagx̂3,(2)

where pa is the fluid pressure, ρa is the density of the phase α, and x̂3 is the unit
vector in the vertical direction. The spatial random fieldsKa(s) represent the intrinsic
permeabilities of the phases given by [29], [30]

Ka(s) = kra(s)K(s),(3)

where kra denote the relative permeabilities and K(s) denotes the intrinsic perme-
ability of the porous medium that is experimentally determined [29], [31]. Finally,
the coefficients µa denote the dynamic viscosity of the phases. The formulation of the
incompressibility equation in terms of the log-permeability random fields is standard
in stochastic hydrology; it is motivated by the fact that the experimental permeability
distributions are often lognormal. In reality, the subsurface is an anisotropic medium,
and thus a scalar K(s) is a poor assumption for deterministic multiphase models. In
stochastic models, however, the anisotropy of the medium is expressed by means of
the permeability correlation function [32]. Of course, this implies that the anisotropic
effects become evident only after ensemble averaging. Extensions of the present model
to anisotropic tensor K(s) are also possible. This can be done easier if the SFP theory
is formulated in terms of the phase permeabilities instead of their logarithms. Equa-
tion (1) should be solved with respect to ja(s) subject to the boundary conditions
and the constitutive relations (3).

The capillary pressure pc(s) is given by the difference between the nonwetting
phase (nw) and the wetting phase (w)

pc(s) = pnw(s) − pw(s).(4)

The system of equations (2)–(4) is usually closed with empirical pressure-saturation
(p-S) relations. These relations are based on the assumption that the capillary pres-
sure depends only on the relative saturations of the two fluids, denoted by Sw(s) and
Snw(s). These functions represent the fraction of the fluid volume in each phase over
the total fluid volume; thus, Snw + Sw = 1 everywhere. Various p-S relations are in
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use for different types of fluids and porous media. We present specific examples in
section 6. The p-S relation is generally expressed as

pc(s) = Φc[Sw(s)].(5)

It is usually assumed, neglecting hysteresis effects, that Φc is a nonlinear, monotone
function of Sw [19]. Φc is a decreasing function of the wetting fluid saturation if pc
is defined by (4); if pc is defined as pc = pw − pnw, then Φc is an increasing function
of the wetting fluid saturation. The relative permeabilities of the wetting and the
nonwetting phase are given as functions of the wetting-fluid saturation by means of
the k-S relations

kr,w(s) = fw[Sw(s)](6)

and

kr,nw(s) = fnw[Sw(s)].(7)

While fw is an increasing function of the wetting-phase saturation Sw, the fnw is a
monotonically decreasing function [29]. The p-S expression (5) and the k-S expressions
(6) and (7) supplement the constitutive relations (3). The above set of equations is
not unique, and it is worth noting that hysteretic constitutive relations have also
been observed [31]. However, the specific choice of constitutive relations does not
influence the general formulation of the SFP approach introduced in this work, at
least if hysteresis is ignored. Equations (1)–(7) constitute the governing system of
the two-phase flow equations; the pressure gradients are coupled via the constitutive
relations that introduce a nonlinear dependence on saturation.

3. Geometric description of flowpath trajectories. The SFP analysis is
based on a transformation of the multiphase flow system into a set of first-order
differential equations that provide a geometric representation of the flow (Figure 1).
While in the conventional analysis the pressure gradients at the nodes of the numerical
grid are considered as the outputs of the multiphase flow system, in the SFP analysis
the pressure gradients and the coordinates of the α-flowpaths (α-FP) are the outputs
of the flow system. Naturally, the α-FP trajectories depend upon the heterogeneity
of the medium and the physical properties of the fluid phases.

In the SFP method the pressure gradients ja(s) are analyzed into the scalar ζa(s)
and the direction vector ea(s) as follows:

ja(s) = ζa(s)ea(s).(8)

The vector ea(s) determines the direction of the α-FP trajectory and its unit Eu-
clidean norm is equal to one, i.e., |ea(s)| = 1. According to the definition (8) the
α-FP curves coincide with the streamlines [34] of each phase (i.e., the curves that are
at every point tangent to the instantaneous phase velocity) in the case of a medium
with a scalar, although possibly statistically anisotropic, saturated permeability. The
flowpaths do not necessarily coincide with the pathlines [34] (i.e., the loci of the po-
sitions of the fluid particles in space as time progresses) in the case of unsteady flow.

A parametrized representation of the α-FP sa(λ) in Rn (where λ ∈ U ⊂ R1 is a
parameter that varies along the α-FP) is obtained in terms of the following mapping
[35]:

λ→ sa(λ) = (s1a(λ), . . . , sna(λ)) ∈ Rn.
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Fig. 1. (a) Conventional analysis vs. (b) SFP analysis of the multiphase flow system
(FP=flowpath; BC=boundary conditions).

To avoid redundancy we replace sa with s when it is clear which phase is denoted by s,
e.g., ζa(s). Equivalently, the direction of the α-FP at each point in space is identified
in terms of n − 1 independent parameters γi,α(i = 1, . . . , n − 1). An illustration is
given in Figure 2 for the case of a three-dimensional Euclidean space (n = 3). A set
of different values for the parameters γi,α leads to a family of flowpaths (Figure 3).
Different choices of the parameters λ and γi,α (i = 1, . . . , n−1) are possible. A natural
choice is λ = �, where � measures the total path length measured from an initial point
s0 at the boundary (Figure 4). The parameters γi,α usually represent the angles of
the direction vector with respect to the axes of the fixed coordinate frame, i.e., the
polar and the azimuthal angles in R3.

In a fixed Cartesian frame the direction vector ea(s) is given by

ea(s) =

n∑
i=1

εi,a(s)x̂i,

where x̂i are the unit vectors along the axes and εi,a(s) are the direction cosines of
the α-FP

εi,a(s) = cos θi,a(s) = dsi,a(�)/d�,(9)

where d� denotes the arc length of an infinitesimal element of the α-FP at point s
along the tangential direction ea(s), so that d�2 =

∑n
i=1 ds

2
i,a. This leads to the

constraint

n∑
i=1

ds2i,a/d�
2 =

n∑
i=1

ε2i,a = 1.(10)



SFP OF MULTIPHASE FLOW IN RANDOM POROUS MEDIA 1525

Fig. 2. An α− FP in R3.

Fig. 3. A family of α− FP s in R3.

Note that along an α-FP the direction vector ea(s) depends on a single parameter,
i.e., the path length �. The one-dimensional derivative of a function f(s) along the
flowpath is given by df(s)/d� = ∇f(s)·ea. Using the geometric representations above,
it can be shown that the rate of change of the pressure gradient along the α-FP is
given by (see Appendix I)

d

d�

[
ζa(s)

dsa
d�

]
= ∇ζa(s) + ρag∇ε3,a(s).(11)

Note that according to (11) all coordinates of the flowpaths are influenced by the
gravitational force, by an amount proportional to the rate of change of ε3,a in the
specific direction.

4. Flowpath formulation of two-phase flow. In this section we develop a
space transformation [26] representation of the multiphase flow along the α-FP for
the case of the initial value problem. In view of (8) above, the incompressibility
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Fig. 4. A parametrized α− FP in R3.

conditions, i.e., (1), can be expressed by means of stochastic ODEs as follows:

dζa(s)

d�
+

{
∇ · ea(s) +

d

d�

[
ln
Ka(s)

µa

]}
ζa(s) = 0.(12)

Note that neighboring flowpaths of each phase are coupled via the term that involves
the divergence of the direction vector ea.

The flux along the flowpath is defined by qa(s) = Ka(s)
µa

ζa(s)ea(s), and the scalar

flux ‖qa(s)‖ is denoted by qa(s). For the initial value problem the general solution of
(12) along the α-FP is then

qa(s) = qa(s0) exp[−ηa(s)],(13)

where ηa(s) is the space transformation of the divergence of ea along the α-FP, given
by

ηa(s) = ηa(�) =

∫ sa(�)

sa(0)

∇ · ea(s′)d�′.(14)

In the special case that the α-FP is a straight line in a two-dimensional domain, (14)
is the standard Radon transform [36]. More generally, if the α-FP is an arbitrary
curve, (14) defines a nonlinear extension of the Radon transform [37]. An equivalent
expression for ηa(s) is as follows:

ηa(s) =

n∑
i=1

∫ si,α(�)

si,α(0)

1

εi,a(s|ui)
∂εi,a(s|ui)

∂ui
dui,(15)

where the (s|ui) denotes the vector (s1, . . . , si−1, ui, si+1, . . . , sn). Equations (13)–(15)
provide closed-form expressions for ζα in terms of the initial conditions ζα(s0), the
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permeability field Kα, and the space transformation ηα. However, explicit solutions
for the ζα require the flowpath equations.

The incompressibility equations (12) are complemented by a set of equations that
determine the flowpaths. In particular, (11) leads to the following 2 × n first-order,
nonlinear differential equations:

d

d�
[ζa(s) cos θi,a(s)] =

∂ζa(s)

∂si
+ ρag

∂ cos θ3,a(s)

∂si
, i = 1, . . . , n.(16)

Note that for n > 1 the variables θi,a are not independent, since they are constrained
by

∑n
i=1 θ

2
i,a = 1. Accordingly, only 2× (n−1) of the equations (16) are independent.

Equations (12) and (16) form the SFP system, which is closed by the constitutive
relationships (3)–(7) and subject to the initial and boundary flow conditions. Since
the p-S relation involves the pressure difference of the two phases, additional relations
are required between the phase pressures, the pressure gradients, and the flowpaths;
these are obtained by integrating (I.2) as follows:

pa(s) = pa(s0) −
∫ sα(�)

sα(0)

d�′[ζa(s′) + ρagε3,a(s′)].(17)

Either deterministic or random flow conditions can be considered with the SFP
method; the type of boundary conditions is expected to affect the flow solutions
as shown in [38] in the case of single-phase flow. Finally, note that another useful
formulation of the multiphase flow equations along the α-FP is obtained in terms of
the Jacobian of the transformation from the Cartesian to the flowpath coordinates
[37].

5. Two-phase flow in a layered heterogeneous medium. In this section we
consider flow in a porous medium with uniaxial heterogeneity in the vertical direction.
This scenario applies, e.g., to layered media that exhibit homogeneous intrinsic per-
meabilities within the layers with variations only along s3. In this case, (14), which
determines the variation of eα between an initial point s0 and an endpoint sf of an
α-FP, leads to the algebraic expression

ηa(sf ) = ln

[
cos θ3,a(sf )

cos θ3,a(s0)

]
.(18)

Equation (13) governs the variation of the flux along the flowpath. In view of (13)
and (18) the pressure gradient at the endpoint is determined by

ζa(sf )

ζa(s0)
=
Ka(s0)

Ka(sf )

cos θ3,a(s0)

cos θ3,a(sf )
.(19)

The flowpath equations (16) give ζa(s) cos θi,a(s) = ci, for i = 1, 2. It then follows
that the magnitude of the pressure gradient is ζa(s) = j⊥,a/ sin θ3,a(s), where j⊥,a =√
c21 + c22. In view of this relationship, (19) leads to

tan θ3,a(sf )

Ka(sf )
=

tan θ3,a(s0)

Ka(s0)
.(20)

Therefore, the flowpaths are determined by the initial conditions and the intrinsic
permeabilities. The pressures along the flowpaths are given by the integral in (17).
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Thus, we obtain the following nonlinear system of integral equations for the phase
pressures:

pa(sf ) = pa(s0) − ρagx̂3 · (sf − s0) −
∫ sf

s0

ds′3
µaq3,a(s0)

Ka(s′) cos θ23,a(s′)
.(21)

The intrinsic permeabilities depend implicitly on the saturation, and thus the integral
cannot be directly evaluated. In fact, (20) and (21) along with the appropriate k-S
relationships and the p-S relation form a system of 3α + 1 equations containing an
equal number of unknowns, e.g., pa, θ3,a, Ka, and Se. Note that the differential
equations (12) and (16) have been replaced with the algebraic equations (19) and
(20). Finally, in the case of saturated, single-phase flow, (20) yields the well-known
law of streamline refraction [34].

6. Waterflooding of a heterogeneous oil reservoir. In the following we
consider injection of water (wetting phase) in a two-dimensional, heterogeneous oil
reservoir. We consider boundary conditions for the saturation coefficient and the
pressure gradients (magnitude ζa(s0) and incidence angles θ1,a(s0)) of the α-FPs
given along a boundary line of a square grid. The gravitational term is ignored in two
dimensions. The two-phase flow satisfies (12) and (16). The intrinsic log-permeability,
lnKs, is modeled using stochastically homogeneous random fields [26]. We use the
Brooks–Corey relations for the p-S and the k-S curves. These are expressed in terms
of the reduced water saturation Se(s), defined by

Se(s) =
Sw(s) − Sw,res

Sw,sat − Sw,res
,(22)

where Sw,res denotes the residual and Sw,sat the maximum saturation of the wetting
phase. The reduced saturation takes values in [0, 1]. Correspondingly, the reduced oil
saturation is given by 1 − Se(s). Explicit expressions for the relative permeabilities
of the oil-water system are given by the following k-S relations [34]:

krw(s) = k0
rw[Se(s)](2+3λ)/λ(23)

and

kro(s) = k0
ro[1 − S(2+λ)/λ

e (s)][1 − Se(s)]2,(24)

where k0
ro, k0

rw, and λ are empirical parameters that characterize the medium. The
relation between the capillary pressure and the water saturation is modeled by means
of

Se(s) =

{
[pc(s)/pe]

−λ, pc > pe,

1, pc ≤ pe,
(25)

where pe denotes the capillary pressure at maximum water saturation. Plots of the
k-S relations are shown in Figure 5 for three different values of the parameter λ. For
a fixed λ, the krw is an increasing function of Se while the kro is decreasing. For a
fixed Se, the krw is an increasing function of λ while the kro is decreasing. The p-S
behavior is shown in Figure 6: The p-S curve is a monotonically decreasing function
of Se. In addition, for a given Se the capillary pressure decreases with increasing λ. In
the following, k0

ro = 0.9, k0
rw = 0.5, Sw,res = 0.1, Sw,sat = 0.9. The dynamic viscosity
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Fig. 5. Plots of the Brooks–Corey k − S curves for λ = 1 (dashes), λ = 4 (solid line), and
λ = 8 (dots).

of the water is µw = 5× 10−3 poise, and the viscosity of oil µo = 1× 10−1 poise. The
pressure is expressed in units of pe.

The complete system of two-phase flow equations involves two incompressibility
conditions (12), two independent flowpath equations (16), four constitutive relation-
ships (4) and (23)–(25), and two pressure integrals (17). Thus, the total number of
equations is 10, matching the number of unknowns: ζa, θ1,a, pa, kr,a (α = w and o),
Se, and pc. The above two-phase flow system is investigated by means of numerical
simulations.
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Fig. 6. Plots of the p− S curves for λ = 1 (dashes), λ = 4 (solid line), and λ = 8 (dots).

7. Numerical solutions. The variables of the flowpath system are the pressure
gradients and the direction of the flowpaths that correspond to the two phases. The
flowpath equations represent the evolution of each phase along different flowpaths;
however, the relative permeabilities of the phases at every point depend on the capil-
lary pressure, and thus on the pressure of the other phase at this point. This coupling
of the flowpaths prevents a straightforward solution of the ODEs by, e.g., Runge–
Kutta or other first-order nonlinear ODE solvers. Instead, we approximate the ODEs
by means of difference equations that we solve using the Newton–Raphson method
[40]. The saturation is also an unknown variable to be determined from the solution
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of the flowpath system.
We propose to solve the steady-state flow equations using an iterative numerical

approach that assumes a profile Se,0(s) as an initial guess for the saturation coefficient.
This determines the initial capillary pressure and the intrinsic permeabilities, and a
reduced system of four first-order nonlinear differential equations is obtained—which
includes the incompressibility conditions (12) and the independent flowpath equations
(16). Solution of these equations yields the oil and water pressure gradients and the
local direction of the flowpaths throughout the entire domain. The oil and water
pressures along the flowpaths are evaluated by the discretized integral of the pressure
gradients (17), and an updated capillary pressure profile is derived by the difference
between the oil and the water pressure; based on this an updated saturation profile is
obtained via (25). The reduced system is solved iteratively until a stable saturation
profile is obtained. The steady-state solution should depend on the conditions at
the injection boundary. It should be independent of the initial guess of the saturation
profile. However, the convergence of the Newton–Raphson method in general depends
on the initial guess. We have experimented with different forms of the initial profile
(guess) and found that there is a layer near the boundary within which the saturation
rises from the boundary value toward one (fully water-saturated medium). Outside
this layer, there are regions of trapped oil with lower water saturation. We have tried
different functional dependences for the initial saturation: a constant profile, linear
increase, and exponential increase toward a maximum saturation. We found that
the method converges fastest when the latter profile is used as an initial guess. In
addition, the saturation toward which the solution converges is independent of the
maximum saturation of the initial profile, at least within the range of values that
we investigated. This method accomplishes a decoupling of the flow equations that
allows their solution independently along the flowpaths.

We use a numerical grid with 101× 101 nodes, and the distance between nodes is
taken equal to one meter. The position on the grid is denoted here by s = (x, y). The
saturated permeabilityK(s) is assumed to be log-normally distributed with arithmetic
mean K = 10−9 m2 and coefficient of variation (COV) µK = σK/Ks = 0.2. A
Gaussian covariance model is assumed for the log-permeability fluctuations f(x, y),
i.e.,

cf (s) = σ2
f exp

[
−
(
x2

b2x
+
y2

b2y

)]
.(26)

We investigate two cases—an isotropic correlation model with bx = by = 20m and an
anisotropic model with bx = 20m and by = 40m. The initial conditions include the di-
rections of the pressure gradients, θa(s0) = va,s0 , where va,s0 is a zero-mean, uniformly
distributed random noise, the magnitude of the pressure gradients ζnw(s0) = 0.01 and
ζw(s0) = 0.03, and the boundary saturation Se(s0) = 0.745. The parameter λ in the
Brooks–Corey relations is assumed to have the value λ = 0.45 in both cases. The
initial guess for the saturation profile increases exponentially from the boundary and
approaches a maximum level of 0.92.

We discretize the equations using finite differences along the flowpaths. The
length of the flowpaths is increased by the finite step δ�α. Here we consider δ�o =
δ�w = δ�. The size of the step is bounded below by the grid resolution and above
by the correlation length, i.e., ε ≤ δ� � ξ, where ε is the lattice step and ξ is the
correlation length of the permeability fluctuations. We use forward finite differences
for the derivatives and the trapezoidal rule for function evaluations. The length
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increments in the orthogonal directions of the grid are given by

δxa,m ≡ xa,m+1 − xa,m =
δ�

2
(cos θa,m+1 + cos θa,m),

m = 0, 1, . . . , Nf,i,(27)

δya,m ≡ ya,m+1 − ya,m =
δ�

2
(sin θa,m+1 + sin θa,m),

and the index m denotes the mth point on the flowpath. The integer Nf,i denotes the
total number of increments in the ith flowpath. In view of (25), (12) is discretized as
follows, where Fm = ln km(s):

(28)

(ζa,m+1 − ζa,m) + [(Fm+1 − Fm) + (ln kr,a,m+1 − ln kr,a,m)

− (θa,m+1 − θa,m)w(θa,m, θa,m+1)]

(
ζa,m + ζa,m+1

2

)
= 0.

The function w(θa,m, θa,m+1) depends only on the local direction of the flowpaths and
is given by

w(θα,m, θα,m+1) =
sin θα,m+1 + sin θα,m
cos θα,m+1 + cos θα,m

− cos θα,m+1 + cos θα,m
sin θα,m+1 + sin θα,m

.(29)

Equation (16) leads to the following difference equations:

ζa,m+1 cos θa,m+1 − ζa,m cos θa,m =
2(ζa,m+1 − ζa,m)

cos θa,m+1 + cos θa,m
(30)

and

ζa,m+1 sin θa,m+1 − ζa,m sin θa,m =
2(ζa,m+1 − ζa,m)

sin θa,m+1 + sin θa,m
.(31)

Note that when θa ∼= 0 the denominator of the right-hand side term of (31) tends
to zero; this indicates that the flowpath is almost parallel to the x-axis, so that the
flowpath variables do not vary along the y-axis. Similarly, the denominator of (30)
tends to zero around θa ∼= π/2, i.e., when the flowpath is almost parallel to the y-axis.
Hence, when mod(θa, π/2) ≤ π/4 (where “mod” denotes the modulo function), (30)
is automatically selected, while (31) is used when mod(θa, π/2) > π/4.

Equations (28)–(31) involve the unknown variables θα,m+1 and ζα,m+1. The θα,m
and ζα,m values are obtained from the previous step or the initial conditions at the
injection boundary. The log-permeability field is known on the grid. Since the traces
of the flowpaths do not pass from the grid nodes, estimates of the log-permeability
at off-grid points are required. In general, such estimates can be derived by a linear
kriging estimator [26]. However, if the correlation length significantly exceeds the
length increment, i.e., δ�� ξ, the log-permeability of the grid is accurately estimated
by the arithmetic mean of the permeability at the four nearest grid points.

We denote by N∗
m the number of updated nodes at the mth iteration. To estimate

the relaxation of the saturation profile we use the relative change in the saturation
coefficient ∆Se,m defined by means of

∆Se,m =
1

N∗
m

N∗
m∑

i=1

|Se,m(si) − Se,m−1(si)|
Se,m−1(si)

.(32)
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Fig. 7. Plot of the mean water saturation in the domain midpoint vs. the number of Newton–
Raphson interations.

A plot of ∆Se,m vs. the Newton–Raphson iteration number is shown in Figure 7. At
the end of the Newton–Raphson cycle the relative saturation change is below 5% for
99.9% of the updated points, in both the isotropic and anisotropic cases. In Figure 8
we plot the mean saturation of the domain vs. the number of iterations. The percent-
age of nodes where the saturation is updated is plotted vs. the number of iterations
in Figure 9. It is seen that this quantity essentially relaxes to a value about 0.16
after 20 iterations, although significant fluctuations persist. The resulting isopressure
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Fig. 8. Plot of the relative change in the saturation profile between consecutive Newton–Raphson
iterations.

contours for the isotropic cases are shown in Figures 10 (water) and 11 (oil). The
constant saturation contours are shown in Figure 12. The code generates the pres-
sures at the nodes visited by the flowpaths, e.g., 7792 nodes for the water phase and
2622 nodes for the oil phase in the isotropic case. These numbers are similar in the
anisotropic case. We use a kriging estimator to obtain the pressures at the nodes that
are not visited by the flowpaths. These values are used for generating the contours
in Figures 10–12. The water-phase pressure contours closely resemble single-phase
flow. This is expected since, after water injection, most of the reservoir is flooded
with water except for areas of trapped oil. In the saturation contour plot (Figure 12)
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Fig. 9. Plot of the fraction of the grid points at which the saturation updated vs. the number
of Newton–Raphson iterations.

there is a narrow layer near the boundary within which the water saturation orderly
increases toward a maximum close to 0.99. In the anisotropic case the water phase
pressure pattern (not shown) does not exhibit any significant differences from the
isotropic case. The same is true of the saturation contours (shown in Figure 14). This
indicates that the anisotropy of the intrinsic permeability is not a significant factor
in determining the residual distribution of oil. On the other hand, the oil isopressure
contours for the anisotropic intrinsic permeability field, shown in Figure 13, exhibit
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Fig. 10. Wetting phase isopressure contours for the isotropic intrinsic permeability field. The
pressure is given in units of the entry pressure pe.

significant changes with respect to the isotropic case (this behavior, however, may
be an artifact, due to the relatively low number of nodes where the oil pressure is
calculated).

8. Transient effects in multiphase flow. In the transient case, the dynamic
flow equations for multiphase flow are given by

φ

Ka(s, t)

∂Sa(s, t)

∂t
+ ∇ · ja(s, t) +

[
∇ ln

Ka(s, t)

µa

]
· ja(s, t) = 0,(33)

where φ denotes the porosity of the medium and Sα the saturation of each phase. In
view of (31), (12) is replaced by

φ

Ka(s, t)

∂Sa(s, t)

∂t
+
dζa(s, t)

d�
+

{
∇ · ea(s, t) +

d

d�

[
ln
Ka(s, t)

µa

]}
ζa = 0.(34)
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Fig. 11. Oil phase isopressure contours for the isotropic intrinsic permeability field. The
pressure is given in units of the entry pressure pe.

The flowpaths develop a time dependence induced by the change of the saturation
field [41]. The SFP system should be solved subject to an initial saturation profile.
The relaxation of the multiphase system in the transient state will be studied in a
future publication.

9. Discussion and conclusions. We proposed an SFP method for studying
multiphase flow in heterogeneous porous formations that is based on established
notions of differential geometry. A numerical algorithm based on discretization of
the flowpath equations and the Newton–Raphson method is implemented for two-
dimensional flow. The method is based on a simple iterative approach: an initial
saturation profile is assumed and updated progressively until the saturation relaxes
to a stable value. Steady-state conditions are considered in this work, but the SFP
method is applicable in the case of transient flow as well.



1538 G. CHRISTAKOS, D. T. HRISTOPULOS, AND A. KOLOVOS

Fig. 12. The reduced water saturation contours for the isotropic intrinsic permeability field.

Other techniques based on the idea of studying multiphase flow along flowpaths
(or streamlines) have also been recently introduced in petroleum engineering [23], [24].
These techniques, however, address the solution of the simpler fractional flow model
often used in oil recovery. In particular, the fractional flow model is based on the
high flow-velocity approximation that neglects the capillary pressure; the multiphase
flow equations can then be formulated in terms of a total velocity that is determined
from an effective Darcy’s law. The SFP method is considerably more general than
these techniques. Indeed, the SFP method allows for nonzero values of the capillary
pressure. It can also incorporate various sets of constitutive relationships that are
of interest in environmental sciences. In principle, hysteretic p-S relations can be
accommodated, as well. In this paper an attempt is made to introduce the new
method and discuss its main features by means of theoretical results (e.g., sections
3–5) and a numerical example (section 6). To our knowledge, there are no exact
analytical results for multiphase flow when the capillary pressure is not ignored. In a
future publication, we plan to investigate additional issues related to the convergence,



SFP OF MULTIPHASE FLOW IN RANDOM POROUS MEDIA 1539

Fig. 13. Oil phase isopressure contours for the anisotropic intrinsic permeability field. The
pressure is given in units of the entry pressure pe.

accuracy, and stability of the proposed method, as well as to perform computational
and experimental comparisons. In particular, more research is required to investigate
three-dimensional flow with gravitational effects, the time evolution of the flowpaths,
and the parameter basin within which the numerical code converges.

Appendix I. Equations (2) for the pressure gradient can be expressed as

(I.1) ∂pa/∂si = −ζaεi,a − ρagδ3i,
where δ3i is the Kronecker delta. The directional derivative of pa with respect to the
arc length �α in the direction ea is

(I.2)
dpα
d�

= ∇pα · eα = −ζα − ραgε3,α.
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Fig. 14. Reduced water saturation contours iterations for the anisotropic intrinsic permeability
field.

Applying the del operator ∇ on both sides of (I.2) we obtain

(I.3)
d

d�
∇pa = −∇ζa − ρag∇ε3,a

for all α. The above gives the rate of change of the pressure gradient ∇pα along an
α-FP. Finally, replacing the gradient on the left-hand side of (I.3) by means of (I.1)
we obtain the SFP system of equations (11).
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