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Abstract 

 

Known conceptual and technical limitations of mainstream environmental health data analysis have 

directed research to new avenues.  The goal is to deal more efficiently with the inherent uncertainty and 

composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health 

models, survey data, empirical relationships etc.), and generate more accurate predictions across space-

time.   Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time 

covariance functions built by integrating epidemic propagation models and we apply them in the analysis of 

existing flu datasets.  Within the knowledge synthesis framework, the Bayesian maximum entropy (BME) 

theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a 

case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 

1998-1999.  We present general features of the proposed covariance functions, and use these functions to 

explore the composite space-time RNI dependency.  We then implement the findings to generate 

sufficiently detailed and informative maps of the RNI patterns across space and time.  The predicted 

distributions of RNI suggest substantive relationships in accordance with the typical physiographic and 

climatologic features of the country. 
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1. Introduction 

 

Stochastic spatiotemporal analysis is widely used in the study of environmental attributes, 

including the field of environmental health assessment (e.g., Christakos and Kolovos 

1999; Choi et al. 2007).  In point-referenced data analysis the goal is to predict unknown 

values of attributes of interest at unsampled spatial locations and temporal instances (e.g., 

Banerjee et al. 2004; Bossak and Welford 2009; Kuo et al. 2009).  Information from 

spatiotemporal inference is often represented and visualized in the form of maps; hence, 

this type of analysis can be particularly important for prediction and decision-making in 

environmental health and risk studies, management and planning, etc. 

 

 Due to the inherent uncertainty in most natural attributes, stochastic methodologies 

have been introduced that can address the uncertainty issues in a scientific and 

meaningful manner at the stages of both data acquisition and subsequent processing 

(Christakos and Hristopulos 1998, Christakos et al. 2002; Escudero et al. 2009).  The 

need to address the concerns of stochastic analysis led to the development of software 

and computational tools to address associated numerical tasks or provide related 

functionality.  A common theme shared by many of these tools is the use of mainstream 

spatial statistics and geostatistics methods (Christakos 1992; Deutsch and Journel 1992; 

Heuvelink 1998; Bivand et al. 2008; Wong and Lee 2005) that were first introduced a 

few decades ago, and have since developed to the extent of their capabilities and 

weathered successfully the test of time.  However, these techniques traditionally serve 

spatial-only analysis purposes (e.g., Banerjee et al. 2004; Arrow et al. 2003; Moore and 
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Carpenter 1999; Schabenberger and Gotway 2005; Wu et al. 2004).  In addition, they are 

known to have a variety of inherent limitations, e.g. linear models are used to represent 

nonlinear phenomena, multi-sourced observation uncertainty is not handled in a 

conceptually rigorous and unified manner, restrictive assumptions are typically made 

regarding the probability distribution and geographical heterogeneity of the data 

(Bayraktar and Turalioglu 2005; Chen et al. 2004; Liao et al. 2006).  In order to address 

these limitations, mathematical concepts and techniques of composite space-time analysis 

under conditions of uncertainty and spatiotemporal heterogeneity were introduced the last 

two decades that led to the development of modern spatiotemporal statistics and 

geostatistics (e.g., Choi et al. 2003; Christakos 1991a, 1991b, 2000; Douaik et al. 2004; 

Law et al. 2006; Serre et al. 2003). 

 

 The shift in analysis introduced by the latter developments was based on the 

cognitive framework of knowledge synthesis (KS) in order to integrate all relevant 

knowledge bases (core and site-specific) about the attribute under study, and generate 

inference in a mathematically rigorous and epistemically sound manner.   KS allows for a 

variety of methods to be applied in the spatiotemporal inference problem and tackles 

successfully the aforementioned classical geostatistics concerns.  Its appealing 

characteristics and usefulness have been already demonstrated, e.g., by means of 

introducing advanced functions for spatiotemporal analysis (Christakos et al. 2002; 

Christakos 1998; Lee et al. 2008).  These functions are implemented in terms of KS 

methods such as Bayesian maximum entropy (BME) and non-Bayesian stochastic logic 

(NBSL) methods (Christakos et al. 2002; Christakos 1991b, 2000, 2010). 
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 Exploring physical dependencies and structural correlations in the observed data 

plays a predominant role in spatiotemporal analysis.  Most typically, these correlations 

are modeled in terms of permissible covariance functions that express mathematically the 

underlying structure in the stochastic field that represents the natural phenomenon, and 

provide the foundation to make predictions at unsampled locations.  Permissible 

functional forms such as the exponential, the Gaussian, and the spherical are broadly used 

to fit empirical descriptions of the correlation in the space-time composite domain.  

Beyond those generic forms, additional permissible covariance models have been 

suggested for this purpose; see, e.g., Gneiting (2002), Ma (2008), Porcu et al. (2008).  

Among the variety of functions that can serve as suitable covariance models, Kolovos et 

al. (2004) proposed a series of elaborate, nonseparable spatiotemporal models that are 

based on physical laws and principles.  In general, it is desirable to derive spatiotemporal 

correlations founded on such principles, because physical laws enable a science-based 

justification of these correlations rather than a fit of generic technical functions. 

 

 The present work builds further on this premise, and we present an example where 

new, model-based spatiotemporal covariances are used for prediction.  Specifically, we 

derive covariances from well-known epidemic models, which we extend into the space-

time domain so that they adequately describe the dynamic propagation of the rate of new 

infectives in an environmental health context.  As a case study, we present an example of 

flu spread across France.  In terms of the KS framework, the proposed covariances are 

part of the core knowledge bases that are used by the Bayesian maximum entropy (BME) 
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methodology for spatiotemporal inference and mapping.  In particular, we use the BME 

approach to study the space-time flu distribution in France based on a specific dataset and 

the relevant epidemic law that is used to derive the covariances.  

 

 The BME approach may be viewed as a substantive extension of the classical 

geostatistics commonly used in environmental health research (Atkinson 1993, Saito et 

al. 2005; Stein et al. 1999).  According to BME, due to the considerable multi-sourced 

uncertainty (caused by physiographic features, disease variability, meteorological 

conditions, etc.) the space-time distribution of the fraction of the population that is 

infected is represented as a spatiotemporal random field 

€ 

X p = Xs, t (S/TRF; Christakos 

and Hristopulos 1998) at each space-time point 

€ 

p = (s,t)  in the natural continuum with 

spatial coordinates 

€ 

s = (s1,s2)  and time 

€ 

t .  Specification of the 

€ 

X p  values at all points in a 

space-time continuum determines a realization of the S/TRF.  Randomness manifests 

itself as an ensemble of possible realizations regarding the 

€ 

X p  distribution.  Similarly, let 

€ 

Yp =Ys, t and 

€ 

Z p = Zs, t be the S/TRFs that represent the distributions, respectively, of the 

fraction of the population that is susceptible of becoming infected and the fraction that 

has recovered and is immune.   

 

 We subsequently take advantage of software tools specifically created to implement 

the unique BME features and also integrate mapping capabilities.  Tools such as the 

Spatiotemporal Epistematics Knowledge Synthesis-Graphical User Interface (SEKS-

GUI; Kolovos et al. 2006; for more details, readers are encouraged to visit 

http://www.spacetimeworks.com) are commonly used in real-world studies, as they have 
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been crafted to perform all different stages of space-time analyses (exploratory, 

correlation analysis, prediction, mapping) and take advantage of the particular BME 

predictive features.  In the present study, we use some of the SEKS-GUI components for 

the purpose of trend estimation and prediction, whereas custom software modules are 

also introduced to carry out the correlation analysis of flu propagation.  

 

2. Methods 

 

2.1. The Knowledge Bases 

 

In principle, BME analysis distinguishes between the core (or general) knowledge bases 

(KB) G-KB, and the site-specific (or specificatory) S-KB.  In this work, in particular, the 

following KB are considered.  

 

2.1.1. The G-KB 

One can find in the literature a considerable number of deterministic and stochastic 

epidemic models, most of which involve ordinary difference or differential equations that 

focus on the temporal variation of a disease (Hethcote 1994; Allen and Burgin 2000; 

Angulo et al. 2012). The following space-time stochastic flu model has been suggested 

by Angulo and Christakos (2010) to describe disease spread, 
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€ 

Xs, t+1 = q(1− a + b fs, t)Xs, t + dR 2∫ uκs-u(1− a + b fu, t )Xu, t
Ys, t+1 = q(Ys, t − b fs, t Xs, t) + dR 2∫ uκs-u(Yu, t − b fu, t Xu, t )
Zs, t+1 = q(Zs, t + a Xs, t) + dR 2∫ uκs-u(Zu, t + a Xu, t)

% 

& 
' 

( 
' 

 (1) 

 

The set of Eqs. (1) is considered in the present work to yield a representation of the 

space-time flu variation. In Eqs. (1), q is the fraction of the population that stays at 

€ 

p = (s,t) , and 1-q is the fraction that moves during the time period 

€ 

t→ t +1; 

€ 

a∈ (0, 1] 

denotes the probability that an infected individual recovers and becomes immune, 

€ 

b∈ (0, 1] is the probability of transmission of infection in an encounter involving one 

infected and one susceptible individual (one may chose to assume that the probability of 

transmission varies across space-time in which case the 

€ 

b in Eqs. (1) should be replaced 

by 

€ 

bs, t); 

€ 

fs,t  is a monotonically decreasing function of time 

€ 

t  with sufficient flexibility 

to represent what one would expect to be the behavior of the fraction of the population 

who is susceptible to infection; and 

€ 

κs  is a time-independent kernel controlling 

population movement across space and such that 

€ 

dR 2∫ sκs =1− q  (e.g., may be a 

Gaussian kernel with finite variance).  Clearly, the following initial conditions (IC) are 

valid: 

 

€ 

X p +Yp + Z p =1
Ys, 0 =1− Xs, 0
Zs, 0 = 0

# 

$ 
% 

& 
% 

 (2) 

 

The space-time disease model (1)-(2) carries important information in the computation of 

explicit forms via recursion for the variables 

€ 

X p , 

€ 

Yp, 

€ 

Z p and their (cross) covariances, 
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since these expressions involve iterated integration accumulated over time. Hence, 

randomness in Eqs. (1) can be introduced in terms solely of

€ 

Xs, 0, which can be assumed 

to be a spatially homogeneous random field (corresponding to the relevant assumptions 

about the kernel and population movement).   

 

 To gain valuable insight, in the following we consider a special case of the 

stochastic flu model (1)-(2) in which it is assumed that, (a) 

€ 

fs,t = f t , i.e. spatially 

independent, (b) 

€ 

q =1 (i.e., the population does not move spatially during the duration of 

the disease), in which case the 

€ 

κs  (time-independent kernel that controls population 

movement across space) has no significance (the integral terms in Eqs. (1) can be 

neglected), and (c) the random IC 

€ 

Xs, 0 is spatially homogeneous (or isotropic).  Under 

the assumptions a-c, Eqs. (1) reduce to  

 

Xs, t+1 = AtXs, 0
Ys, t+1 =1− (1+Bt )Xs, 0
Zs, t+1 =Ct Xs, 0

"

#
$

%
$

 (3) 

 

with IC as in Eq. (2), and the factors 

€ 

At , 

€ 

Bt , and 

€ 

Ct  are defined as follows: 

At = (1i=0
t∏ − a+ b fi )  (4) 

Bt =
b f0,                                 t = 0

b f j (1i=0
j−1∏j=0

t∑ − a+ b fi ),    t ≥1

%
&
'

('
 (5) 

Ct =
a,                                     t = 0
a (1i=0

j−1∏j=0
t∑ − a+ b fi ),    t ≥1

%
&
'

 (6) 
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The corresponding mean, covariance, and cross-covariance functions are shown in Table 

1 with IC, 

€ 

cX; s− # s , 0 (covariance of 

€ 

Xs, 0 and 

€ 

X " s , 0).  The expressions in Table 1 indicate 

that the proposed covariances are non-stationary in time.  For example, the cross-

covariance of 

€ 

Xs, t+1 and 

€ 

Y " s , " t +1 is cX,Y ; s, t+1; !s , !t +1 = −At (1+B !t )cX; s− !s , 0 , which depends 

explicitly on the specific temporal instances 

€ 

t  and t ' .  

 

As noted earlier, 

€ 

ft  is a monotonically decreasing function of 

€ 

t .  It may include 

at least two parameters that allow variation at 

€ 

t = 0 and for different rates of decay as 

€ 

t  

increases, and possibly a parameter so that at 

€ 

t = 0, 

€ 

f0 ∈ (0, 1) , and at 

€ 

t→∞ , 

€ 

f∞ ≥ 0.  In 

the present study, we use the following exponential form 

€ 

f t = exp(−γtε ) (7) 

where the parameters 

€ 

γ, ε > 0 .  Other 

€ 

ft  forms could be considered, depending on the 

known features of the epidemic (Angulo et al. 2012).  

 

2.1.2. The S-KB 

The ratio of new infectives (RNI) 

€ 

ρs, t  is an attribute defined as follows:  The RNI 

€ 

ρs, t  in 

a geographical region 

€ 

s  and at the time period 

€ 

t  is the ratio of the number of new 

infected individuals over the population of the region.  Note that 

€ 

ρs, t  is a quantity similar 

to the incidence crude rate used in epidemiological studies; however, 

€ 

ρs, t  is 

dimensionless, whereas the crude rate is typically measured in person-weeks units.  In 

our work, we use the RNI to study the number of new flu infectives per week in each one 

of the 21 regions in the French mainland (Fig. 1).  The collected information consists of 
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aggregated observations recorded by general physicians through the Sentinel project in 

France over a time period of 53 weeks between August 1998 and August 1999. 

 

In the RNI dataset, the 

€ 

ρs, t  values vary between 0 and 

€ 

4.8⋅ 10−3 , where the high 

values indicate a fairly contagious flu distribution.  The actual survey contains a 

significant number of zero new infectives at the finer district scale.  It is known that some 

of these zeros in our data may be noise, e.g., an occasional lack of a physician at a 

particular location may have caused a potentially nonzero record to be recorded as zero.  

For this reason, we choose to present this flu study at the aggregated level of larger 

regions; this choice has a smoothing effect on the finer scale inconsistencies.  The RNI 

observations are assigned the coordinates of the centroids of the corresponding French 

regions, and they form a time-series of 53 weekly values at each region.  See Fig. 2 for a 

plot of the study data time series for five selected regions.  Fig. 3 shows an example of 

the spatial distribution of RNI observations for the second of the weeks included in our 

analysis, as defined later in this section. 

 

 The study of aggregated information justifies the choice of RNI over the actual 

number of new infectives as follows:  The original records of aggregate numbers of new 

infectives for each region constitute areal data.  However, the population within a region 

is more probably spread across its area, rather than being concentrated at a single location 

(a selection of population models can be found in the literature; see, e.g., Renshaw 1993).  

In that sense, the newly infected people could be possibly grouped at many different 

locations across the region, such as towns and cities.  Consequently, in the context of 
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areal data, single observations of the number of new infectives at the region centroid are 

most likely unrepresentative of the spatial distribution of the new infectives.  Instead, the 

ratio of new infectives (RNI) is an attribute that can be sensibly considered at any 

arbitrary location as a point datum.  In this perspective, an RNI value represents a 

quantitative characteristic that is valid for any single location across a region.  

Accordingly, we can use geostatistics to analyze the spatiotemporal structure of this 

characteristic and provide localized values on a space-time grid.  In the following, we 

investigate the spatiotemporal structure directly on the basis of the RNI observations 

available at the regional scale.  It is possible to further refine the structure analysis by 

means of a downscaling approach; for an example, see the work of Choi et al. (2003). 

 

In effect, using the RNI attribute enables approximation of the areal data coming 

from regional aggregation with point-referenced data at the region centroids.  Our work 

adopts this simplified approach in the interest of weighting on the proposed 

spatiotemporal covariances development.  Often, approximating areal data with 

observations at centroids is a necessary mode of action to protect sensitive data at finer 

local scales.  Nonetheless, as commonly as this approximation might be used, it also 

entails some concerns.  These relate to the potential impact of the geographical units 

characteristics that are used in the analysis, as pointed out by Goovaerts (2008); the 

potentially dubious assumption of using similar spatial resolutions at the areal scale of the 

observations and the prediction grid scale; and the issue of ignoring variability within 

each of the studied areal units. Yu et al. (2011) discusses these concerns and recommends 

further study of their potential biasing impacts on prediction.  
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 We study the RNI attribute in a rectangular domain that surrounds France.  In 

geographic coordinates, the rectangle spans from 5˚W to 8˚30’E longitude, and from 

42˚N to 51˚30’N latitude.  An area this large can distort the calculations of eucleidian 

distances due to the Earth curvature.  To account for this distortion, our study uses the 

Lambert Conformal Conic (LCC) projection for France, where distances are measured in 

meters.  We consider selected locations within this domain to predict unsampled ratios 

€ 

ρ p across space-time.   

 

 In the temporal scale, we focus on the 15 weeks that span from the 19th week of flu 

data starting on December 21, 1998 (that we will refer to as 

€ 

t =1) until the end of the 

33rd week of data that starts on March 29, 1999 (referred to as t =15).  Overall, we have 

a total of 

€ 

21×15 = 315 observations over the 15-week period.   We selected the specific 

time frame because it coincides with the most active period (rise, peaking and waning of 

the ratios of new infectives) of the flu season, according to the data time series.  Our goal 

is to predict the spatiotemporal pattern of 

€ 

ρs, t  across France throughout the specified 15-

week time interval. 

 

 The parameters a , 

€ 

b, 

€ 

γ  and 

€ 

ε  in our flu model Eqs. (3-7) regulate characteristics 

of the flu propagation, and their values are determined by case-specific information.  To 

preserve the stochastic nature of Eqs. (3-7), we consider these parameters as random 

variables.  In particular, the mean values for the 

€ 

b, 

€ 

γ  and 

€ 

ε  parameters are derived by 

fitting them to the RNI 

€ 

ρs, t  observations by using Eqs. (3-4) and (7) across all time 
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instances; the fitted values are the corresponding means shown in Table 2.  For the 

probability a  that an infected individual recovers and becomes immune, assuming that 

the cold lasts for an average of 7 days, one can deduce the expected value 

E[a]=1/ 7 ≅ 0.143 ; we assume this to be the mean of a .  This rationale implies that, on 

average, a newly infected person gets well within one week; hence, in the context of our 

study the S/TRF 

€ 

X s, t  of the fraction of population that is infected during week 

€ 

t  

coincides with the RNI 

€ 

ρs, t  of newly infected people at the same week 

€ 

t .  For this 

reason, we represent 

€ 

ρs, t  through the S/TRF 

€ 

X s, t .  Since we have data only for RNI, this 

study performs inference analysis for the S/TRF 

€ 

X s, t .  If there are observations available 

for the fraction of the population that is susceptible of becoming infected and the fraction 

that has recovered and is immune, it is straightforward to extend the analysis in terms of 

€ 

Ys, t  and 

€ 

Zs, t  S/TRF, respectively.   

 

 By assuming that 

€ 

a  and 

€ 

b are random variables, we also satisfy the realistic 

requirement of the flu study that 

€ 

a and 

€ 

b vary across space-time as follows:  We 

consider 

€ 

a  and 

€ 

b to follow beta distributions according to Table 2.  Then, we manifest 

variation of 

€ 

a  and 

€ 

b in space-time by selecting random values from their distributions to 

compute the covariance between each pair of space-time locations.  Observe that no 

systematic space-time dependence is assumed for the values of each parameter, hence the 

parameters appear in the flu model equations without s or t subscripts.  For comparison 

purposes, we perform two experiments in our study:  (A) We consider a standard 

deviation of 10% in the values of each one of 

€ 

a  and 

€ 

b, and (B) We consider a standard 

deviation of 2% in the values of each one of 

€ 

a  and 

€ 

b. 
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 For practical purposes, the S-KB is described in terms of the point vector 

€ 

pdata  that 

consists, respectively, of the hard data point vector 

€ 

phard  (exact measurements), and the 

soft data vector 

€ 

psoft  (where incomplete yet valuable 

€ 

ρs, t  information is available).  In 

the absence of information about uncertainty in the aggregation process, we consider that 

the whole dataset consists of 

€ 

ρs, t  observations with exact values (hard data); hence, we 

consider only the hard data vector 

€ 

phard  of new infectives ratios to be the 

€ 

pdata  vector.  

For inference purposes, we need to identify and remove mean (surface) trends in the 

€ 

ρs, t  

data so that we can explore the dependence among the data residuals in space and time. 

 

2.2. BME Methodology 

 

As noted earlier, we implement BME analysis to study the flu RNI distributions in 

France.  A solid presentation of the BME theory can be found in the literature (e.g., 

Christakos 2000, 2008).  In a brief and concise summary, the fundamental BME 

equations of spatiotemporal dependence analysis and mapping are as follows (Christakos 

2008, 2010) 

 

  

€ 

dχ∫ (g − g)eµ T g = 0

dχ ξS∫ eµ T g − A fK (p) = 0  

& 
' 
( 

) ( 
 (8) 
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where the bar denotes stochastic expectation, 

€ 

g  is a vector of 

€ 

gi-functions (

€ 

i =1, 2, ...) 

that represents stochastically the available general knowledge bases G-KB described 

above, 

€ 

µ  is a vector of 

€ 

µi-coefficients that depends on the space-time coordinates and is 

associated with 

€ 

g  (i.e., the 

€ 

µi  express the relative significance of each 

€ 

gi-function in the 

composite solution sought), 

€ 

χ stands for the vector of actual values of the attribute, the 

  

€ 

ξ S  represents the available site-specific knowledge bases S-KB also described earlier, 

€ 

A  

is a normalization parameter, and   

€ 

fK  is the attribute probability density function (PDF) at 

each spatiotemporal point (the subscript K means that   

€ 

fK  is based on the blending of the 

core and site-specific KB).  The 

€ 

g  and   

€ 

ξ S  are the inputs in Eqs. (8), whereas the 

unknown are the 

€ 

µ  and   

€ 

fK  across space and time.  Eqs. (8) establish a spatiotemporal 

analysis context within which the G-KB refers to the entire 

€ 

p-domain of interest; the 

domain consists of the space-time point vector 

€ 

pk  where 

€ 

ρs, t  predictions are sought, and 

the point vector 

€ 

pdata  where S-KB is available.  The model   

€ 

fK  describes the probability 

distribution of the 

€ 

ρs, t  values at each point 

€ 

pk  in view of the total knowledge, K-KB.  

Given the   

€ 

fK  at 

€ 

pk , different 

€ 

ρs, t  predictions can be derived at each spatiotemporal node 

of the mapping grid (most probable, error minimizing etc.), depending on the objectives 

of the study. 

 

 The BME framework is based on the above foundations to assimilate in a rigorous 

manner uncertain but valuable data sources that were previously unaccounted for.  It does 

not make any of the common yet often questionable assumptions of classical statistics, 

since BME can consider non-Gaussian probability laws, non-linear predictors and 
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spatiotemporally dependent attribute values with heterogeneous features.  Notably, in the 

presence of only means and covariances G-KB and hard data S-KB, the BME predictor 

that is derived from Eqs. (8) reduces to the ordinary kriging predictor, and this renders 

BME as a superset of classical geostatistics methods (Christakos 2000).  In terms of the 

analysis output, the complete prediction PDF is generated at each space-time point rather 

than a single estimate.  Thus, by design, the BME mapping accuracy is superior to that of 

other techniques such as geostatistical Kriging and statistical regression; see, e.g., 

Christakos et al. (2004) and Serre and Christakos (1999). 

 

3. Results 

 

3.1. Preliminary Analysis and Spatiotemporal Dependence Structure of Flu 

 

A first look at the spatiotemporally averaged histogram of the 

€ 

ρs, t  data reveals that the 

ratios are highly skewed (see Fig. 4).  Indeed, only a small percentage of the population 

get the flu every week; most of the time no people get sick, which frequently leads to a 

near-zero ratio.  The histogram is also in agreement with the fact that population risk 

ratios such as the RNI typically follow the Poisson law (Clayton and Hills 1993).  The 

15-week sample average is 

€ 

x ≈ 5.2⋅ 10−4 , and the figure histogram resembles closely the 

Poisson distribution 

€ 

Poisson(x ). 
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 We perform spatiotemporal analysis at the nodes of a regular grid surrounding the 

French mainland with spatial node distance equal to 20 Km and temporal distance 1 week 

between consecutive instances.  The dynamic analysis is performed across space and 

between the instances 1 and 15, as defined earlier.  The composite spatiotemporal 

grid has 53

€ 

×52 spatial and 15 temporal nodes resulting in a total of 41340 nodes. 

 

 A spatiotemporal trend analysis is performed first to remove surface trends from the 

data.  We estimate spatiotemporal trends by applying a spherical smoothing kernel with a 

spatial range of 400 Km and a temporal range of 4 weeks.  These trends are temporarily 

removed to prevent larger-scale spatiotemporal variations from interfering with analysis 

at the study scale.  After the prediction stage, the trends are reinstated to produce maps of 

the predicted RNI.  The plots in Fig. 5 display examples of the estimated trends at the 

instances of weeks 2, 6, 10 and 14. 

 

 The residual RNI are then subjected to spatiotemporal dependence analysis to 

discover how the observed ratios 

€ 

ρs, t  are correlated in space-time, and then use this 

information for inference.  The present study introduces the covariance functions in Table 

1 based on the space-time flu model in Eqs. (3).  These covariances are non-stationary in 

time, therefore computations must be made explicitly for every pair of temporal 

instances. For the S/TRF 

€ 

X s, t  we calculate the covariances for every pair of 

spatiotemporal locations 

€ 

(s,t +1)  and 

€ 

(s',t '+1)  by computing the factors 

€ 

At  and 

€ 

At '  based 

on Eqs. (4) and (7) starting at 

€ 

t =0.  For the spatial covariance 

€ 

cX ; s− # s , 0  covariance factor 
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at 

€ 

t =0, we fit a spherical model to the RNI observations at 

€ 

t =0 that has a sill of 

€ 

3.67⋅ 10−8  (in RNI variance units) and a range of 120 Km (Fig. 6a). 

 

 In mainstream covariance studies, the correlation between any two space-time 

locations is calculated with the use of permissible covariance functions, such as the 

spherical form used earlier for the spatial covariance 

€ 

cX ; s− # s , 0 .  For case-specific sill and 

range parameters, the correlation measure is then expressed in terms of distances from a 

spatial and a temporal origin.  Hence, one can plot the covariance function for a series of 

spatial and temporal distances to visualize how correlation evolves as these distances 

increase; this is the space-time extension of the steps we took to create the spatial 

covariance 

€ 

cX ; s− # s , 0  in Fig. 6a.  Due to non-stationarity in time, covariance functionals in 

Table 1 depend on the selection of 

€ 

t =0, and mainstream covariance modeling and 

plotting in terms of spatial and temporal distances is inapplicable in this case.     

 

 However, one can plot the factors 

€ 

At , 

€ 

Bt , and 

€ 

Ct  in Eqs. (4-6) as functions of time 

to gain some insight into the behavior of each one of the factors; see plots in Fig. 6b-d.  

The factors are plotted for a long sequence of instances up to 

€ 

t =100.  The plots indicate 

that for the flu model mean values of coefficients 

€ 

a , 

€ 

b, 

€ 

γ  and 

€ 

ε  and the selection of 

€ 

ft  

in Eq. (7), these factors exhibit an asymptotic behavior.  The spatial covariance factor 

€ 

cX ; s− # s , 0  governs dampening of the products between pairs of the 

€ 

At , 

€ 

Bt , and 

€ 

Ct  at 

instances 

€ 

t  and 

€ 

t', as shown in Table 1.  In addition, the plots in Fig. 6b-d illustrate 

vividly the effect of considering random 

€ 

a , 

€ 

b coefficients in the flu model of Eqs. (4)-

(6).  As is intuitively expected, larger levels of variance in the coefficients cause the 
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factors to fluctuate more intensely in time (solid and dot-dashed plots in Fig. 6b-d) 

compared to the behavior of constant 

€ 

a and 

€ 

b (dashed line plots in Fig. 6b-d).  The 

temporal behavior of each individual factor 

€ 

At , 

€ 

Bt , and 

€ 

Ct  illustrated in Figure 6 could 

be possibly linked by disease specialists to specific flu spread physical characteristics.  

For example, Fig. 6b indicates peaking and attenuation in the temporal evolution of 

€ 

At  in 

a single cycle that lasts for about 50 weeks.  This cycle is governed by the parameters 

€ 

a, 

€ 

b, 

€ 

γ  and 

€ 

ε  and the selection of 

€ 

ft  in Eqs. (4) and (7), and can be classified as 

manifestation of specific epidemic behavior.  Then, in a different epidemiological event 

governed by a possibly different combination of parameters 

€ 

a, 

€ 

b, 

€ 

γ , 

€ 

ε  and function 

€ 

ft , a 

similar temporal evolution of 

€ 

At  can indicate similarity of the two events on the basis of 

the 

€ 

At  characteristics.  That is, the model-based covariances we introduce on the 

foundation of Eqs. (1) could be potentially play an important role as classification tools 

for disease spread events. 

 

3.2. Spatiotemporal Mapping of Flu 

 

The predictions of the flu RNI 

€ 

ρs, t  values are obtained by means of BME analysis, using 

the available 

€ 

pdata  information, the 

€ 

ρs, t  mean trends, and covariances of 

€ 

X s, t+1 and 

€ 

X s', t'+1 in Table 1.  At every space-time grid node, BME generates the prediction PDF, 

  

€ 

fK , of 

€ 

ρs, t  at that location; thus, BME provides a full stochastic description of the ratios 

€ 

ρs, t  throughout the specified spatiotemporal grid.  The series of prediction PDFs   

€ 

fK  

across space-time contain a wealth of information about the spatiotemporal distribution 
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of 

€ 

ρs, t  because various RNI values can be derived from   

€ 

fK .  A typical 

€ 

ρs, t  prediction 

value is obtained in terms of the mean of   

€ 

fK  (BMEmean). 

 

Fig. 7 displays the predicted RNI 

€ 

ρs, t  BMEmean for the experiment A (random 

coefficients 

€ 

a  and 

€ 

b with 10% standard deviation) across space at selected weeks 

throughout the time-period of interest.  Each map portrays predicted RNI values at the 

output grid locations based on each location’s spatial and temporal data neighbors, in 

accordance to the specified spatiotemporal correlation model in Table 1.  The maps in 

Fig. 7 are selected snapshots of the weekly prediction sequence at intervals of one month, 

and they show clearly how the RNI rates increase and subside during the high-activity 

segment of the flu season.  All RNI prediction maps are identically color-scaled to 

facilitate comparisons between different temporal instances.  Predicted values are overall 

low and range between 0 and about 0.0015 in the southern regions during the flu season 

peak. 

 

 Fig. 7 also shows that throughout the study duration the model predicts noticeable 

spikes of 

€ 

ρs, t  values at individual locations among much lower RNI values.  These 

spikes appear as darker points on the maps because of the dense gradient between them 

and the values at the surrounding grid nodes.  The actual values of these high RNI 

predictions might exceed the scale used in the maps; for example, at 

€ 

t =2 in Fig. 7a, 5 of 

the 7 darker points have values that exceed the color scale of the plot, and the maximum 

of these predicted 

€ 

ρs, t  values is 0.0193.  We attribute these isolated high values to a 

combination of two reasons:  First, this is a natural result of having strong variability in 
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the observations at the corresponding and neighboring time instances; one may observe, 

for example, the high spatial variability in the RNI values at 

€ 

t =2 (Fig. 3).  The 

covariance models we use manifest this variability by naturally causing some local RNI 

predictions to exhibit higher values.  Second, in some cases the magnitude of these few 

high RNI predictions exceeds even the highest observed RNI values; for example, at 

€ 

t =2 

(Fig. 3), the RNI data values remain below 0.0005.  This behavior suggests that a few 

unreasonably high RNI values might be isolated numerical artifacts of the analysis.  In 

the light of the previous two remarks, the predicted spikes in the RNI 

€ 

ρs, t  distribution 

should be rather seen as indications of the possibility to have comparatively higher RNI 

values in the corresponding spatial neighborhoods than be accounted as actual predictions 

of acute flu RNI. 

 

 The prediction results of experiment B (random coefficients 

€ 

a and 

€ 

b with 2% 

standard deviation) were found to be very similar to the results of experiment A, both in 

the actual predicted values and the spatiotemporal patterns produced by each different 

approach.  Fig. 8 illustrates the BMEmean of the flu RNI 

€ 

ρs, t  prediction from the 

experiment B at the same four weekly instances as Fig. 7.  A direct comparison of 

predicted RNI 

€ 

ρs, t  values at corresponding spatial locations is unfeasible due to the 

randomness infused in the prediction at each space-time location by the coefficients 

€ 

a 

and 

€ 

b; see also the discussion in the following paragraphs.  However, the RNI prediction 

maps in experiment B are color-scaled using the same scale as those of the experiment A, 

and a visual comparison reveals the similarity of important prediction characteristics of 

the two experiments; namely, predictions in both cases appear to have similar levels of 
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spatial variation, patterns of higher or lower RNI predictions are similar, and these 

patterns are located at comparable spatial locations in both cases. 

 

 As a measure of prediction error we compute the standard deviation of the 

prediction PDF   

€ 

fK  at each spatiotemporal location (see an example in Fig. 9).  Error 

values were distributed relatively evenly in space at every temporal instance for each one 

of the two experiments A and B.  Errors were also found to be expectedly smaller close to 

data locations; however, this effect was less pronounced in experiment A than in 

experiment B, which is attributed to the higher standard deviations of the random 

coefficients 

€ 

a , 

€ 

b in experiment A.  In addition, the error values exhibited increasing 

values in both experiments towards the final weeks in the study, and this is related to the 

progressively increasing variability in the values of the factors 

€ 

At , 

€ 

Bt , and 

€ 

Ct  in Eqs. (4-

6), as was illustrated in Fig. 6b-d.  These findings reflect that BME incorporates 

efficiently in the output the uncertainty of the stochastic components in the G-KB, in 

addition to the uncertainty attributed to the prediction process itself.  

 

 The previous experiments A and B suggest that different levels of variation in the 

random coefficients 

€ 

a and 

€ 

b of the covariance expressions affect only mildly the 

predictive behavior of the BME model, despite the notable effect observed in the 

individual covariance factors in Fig. 6b-d and the effects on the prediction errors.   The 

fact that we assume realistic changes in the random coefficients 

€ 

a and 

€ 

b for inference at 

different spatial and temporal locations leads to another interesting observation.  At any 

given spatiotemporal node the relevant computations produce different results from any 
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other repetition of computations at the same node, and this is due to the constantly 

varying values of 

€ 

a and 

€ 

b.  In light of this remark, it is possible to consider the space-

time flu predictions as possible realizations of a simulation process that is controlled by 

the natural randomness in 

€ 

a and 

€ 

b.  For this investigation, we performed the following 

experiment:  We picked the time instance of week 7 to perform 100 iterations of BME 

flu predictions for each one of the settings in experiments A and B.  Then, for each one of 

these settings we averaged the RNI BMEmean values at each node and produced a map 

of the averaged RNI BMEmean.  These two maps are shown in Fig. 10. For comparison 

purposes, Fig. 10c shows the BMEmean map for experiment A at 7.  Fig. 10d depicts 

a map of the absolute differences  of the averaged BMEmean 

values for the A and B experiment settings.   

 

 Note that the absolute differences in Fig. 10d range in their vast majority between 

near-zero and around .  The near-zero values are explained by the fact that in both 

experiments BMEmean tends to be very close to zero at the same locations throughout all 

iterations; hence, the averaging effect produces near-zero values for both experiment A 

and B settings, and their absolute difference is also a near-zero value at corresponding 

locations.  The uniformity in the absolute differences across the rest of the spatial 

prediction grid has a similar explanation rooted in the averaging effect.  Most 

interestingly, the absolute differences plot in Fig. 10d indicates that the averaged 

BMEmean values based on experiment B consistently overshoot their experiment A 

counterparts.  This behavior suggests that higher standard deviations in the random 

distributions of the coefficients  and  possibly lead to reduced BMEmean predictions 

€ 

t =

€ 

t =

€ 

BMEmeanA − BMEmeanB

€ 

−0.005

€ 

a

€ 

b
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of the flu RNI .  This is a very useful feature that could enable fine-tuning of the 

coefficients  and  in real-world studies based on the proposed models in Eq. (1). 

 

4. Discussion 

 

Spatiotemporal BME analysis is known to tackle successfully certain shortcomings of 

mainstream spatial statistics and geostatistics.  This work takes advantage of one aspect 

of this analysis, namely the BME ability to integrate physical-based general knowledge 

bases.   Specifically, using main features of the KS framework behind BME theory, we 

introduce a family of new covariance models that are constructed from epidemic 

propagation models, and we illustrate how to account for them as general knowledge 

bases for environmental health spatiotemporal prediction.  As a case study, we examined 

the spatiotemporal rate of new infectives in a flu spread across France during a period of 

15 weeks.  Our investigation indicates that the KS methodology embraces the creation of 

an enhanced selection of knowledge bases to choose from and apply in different tasks as 

appropriate, as opposed to using standard mathematical constructs that might lack the 

elements of physical depth and foundation.  This feature enables more accurate 

description of an attribute, and provides the freedom to experiment with a broader range 

of scenarios in different environmental health study designs. 

 

 The ratio of new infectives RNI is modeled as a stochastic S/TRF to study its 

behavior with the proposed new covariances.  BME analysis produces maps of the 

predicted RNI PDF means around the time of the highest flu activity in the year, 

€ 

ρs, t

€ 

a

€ 

b
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according to the available observations.  The main features of the new model-based 

covariances are explored by investigating the behavior of their components and the 

corresponding coefficients with the help of illustrative examples and carefully designed 

experiments.  The generated maps and associated space-time correlation analysis offer 

informative representations of the RNI attribute and can play a strong supporting role to 

environmental assessment specialists in different ways.  For example, the predicted RNI 

can indicate the spatial behavior of the propagation ratio during a particular season of the 

year; it can lead experts to identify possible causal mechanisms (such as the role of 

geographical location in outbursts, and the event propagation speed across space-time) 

and their interrelations; the generated spatiotemporal patterns can be useful for 

disentangling the influence of explanatory factors, or even for identifying some 

influential ones that could have been otherwise overlooked. 

 

 In sum, and in a more general context, a knowledge synthesis framework that 

combines efficient methodologies of integrating new knowledge bases (that can broaden 

the range of informative resources and improve the inference process) with practical 

software tools (for the physically meaningful implementation of the theory) could point 

to new and fruitful directions of research in environmental assessment and mapping. 
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Tables 

 

 

€ 

X s, t+1 = AtX s, 0  

€ 

Y s, t+1 =1− (1+ Bt)X s, 0  

€ 

Z s, t+1 =1−Ct X s, 0  

 

 

€ 

X " s , " t +1 

€ 

Y " s , " t +1 

€ 

Z " s , " t +1 

€ 

Xs, t+1 

€ 

At A " t cX; s− " s , 0  

€ 

−At (1+ Bt' )cX; s− # s , 0 

€ 

At C " t cX; s− " s , 0  

€ 

Ys, t+1 

€ 

−At' (1+ Bt )cX; s− # s , 0 

€ 

(1+ Bt )(1+ Bt' )cX; s− # s , 0 

€ 

−(1+ Bt)Ct' cX; s− # s , 0 

€ 

Zs, t+1 

€ 

A " t Ct cX; s− " s , 0  

€ 

−(1+ Bt' )Ct cX; s− # s , 0 

€ 

Ct C " t cX; s− " s , 0  

 

Table 1:  Means, covariances, and cross-covariances of 

€ 

X p , 

€ 

Yp , and 

€ 

Z p. 
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Coefficient Mean 

Beta Distribution Shape Parameters 

2% Standard Deviation 10% Standard Deviation 

€ 

α  

€ 

β 

€ 

α  

€ 

β 

€ 

a 0.143 2142.2 12833 85.4353 507.0212 

€ 

b 0.534725093 1162.7 1011.8 46.0741 40.2198 

€ 

γ  0.058320202 
 

€ 

ε  1.024037215 

 

Table 2:  Coefficient values used in the study.  The means of the coefficients 

€ 

b, 

€ 

γ , and 

€ 

ε  are fitted values, 

whereas the mean of the coefficient 

€ 

a  is based on a physical assumption, as explained in the text.  

€ 

α  and 

€ 

β are the shape parameters of the beta distribution for each of the parameters 

€ 

a  and 

€ 

b in the two 

experiments of 2% and 10% standard deviation examined in the study. 
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Figure Legends 

 

Fig. 1  Map of France and its 21 mainland regions 

 

Fig. 2  Time series of the flu ratio of new infectives (RNI) 

€ 

ρs, t  (vertical axes) at the x (Easting) and y 

(Northing) centroid coordinates of five selected regions in France for the 53-week period starting on Aug. 

17, 1988.  Coordinate units are in m.  The vertical axes show the weekly RNI values 

 

Fig. 3  Locations of the flu ratio of new infectives (RNI) 

€ 

ρs, t  data across France and 

€ 

ρs, t  values at 

€ 

t =2.  

Each one of the color-filled circles is located at the corresponding region centroid, and the color indicates 

the aggregate ratio 

€ 

ρs, t  at 

€ 

t =2 

 

Fig. 4  Histogram of the flu RNI 

€ 

ρs, t  data set values distribution 

 

Fig. 5  Mean trend of the flu RNI 

€ 

ρs, t  at selected time instances: (a) week 

€ 

t =2, (b) week 

€ 

t =6, (c) week 

€ 

t =10, and (d) week 

€ 

t =14 

 

Fig. 6 Plot of the spatial spherical covariance at 

€ 

t =0 (subplot a).  Plots of the factors 

€ 

At  (subplot b), 

€ 

Bt  

(subplot c), and 

€ 

Ct  (subplot d) with time.  The black dashed line of the function plot designates the factor 

values by assuming exact values (no variance) for the coefficients 

€ 

a  and 

€ 

b in the factors expressions.  The 

dot-dashed line (mostly overlapping the dashed line) and the solid line designate factor values by assuming 

random, beta-distributed coefficients with 2% and 10% standard deviation, respectively 

 

Fig. 7  BMEmean of the flu RNI 

€ 

ρs, t  prediction PDFs at selected time instances: (a) week 

€ 

t =2, (b) week 

€ 

t =6, (c) week 

€ 

t =10, and (d) week 

€ 

t =14.  The RNI values are based on the settings for the experiment 

A 
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Fig. 8  BMEmean of the flu RNI 

€ 

ρs, t  prediction PDFs at selected time instances: (a) week 

€ 

t =2, (b) week 

€ 

t =6, (c) week 

€ 

t =10, and (d) week 

€ 

t =14.  The RNI values are based on the settings for the experiment B 

 

Fig. 9 Standard deviation of the flu RNI 

€ 

ρs, t  prediction PDFs at selected time instances.  For the week 

€ 

t =2: (a) experiment A, (b) experiment B.  For the week 

€ 

t =6: (c) experiment A (d) experiment B.  The 

color scale is different for each plot to enable viewing the maximum standard deviation values in each case.  

For comparison purposes, it is relatively easy to see that at the same instances the majority of error values 

are very similar for both experiments.  Specifically, at 

€ 

t =2 the standard deviations range at about 

€ 

3⋅ 10−4

, whereas at 

€ 

t =6 they range below 

€ 

5⋅ 10−4  

  

Fig. 10  Average 

€ 

BMEmean  from 100 flu RNI 

€ 

ρs, t  predictions at week 

€ 

t =7 for the settings of (a) 

experiment A, and (b) experiment B.  (c) BMEmean of the flu RNI 

€ 

ρs, t  prediction PDFs at week 

€ 

t =7, 

based on the experiment A settings. (d) Map of the absolute differences 

€ 

BMEmeanA − BMEmeanB  
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Fig. 1 

 

 



 38 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 

 

 


