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[1] This work presents a computational formulation of the Bayesian maximum entropy
(BME) approach to solve a stochastic partial differential equation (PDE) representing the
advection-reaction process across space and time. The solution approach provided by
BME has some important features that distinguish it from most standard stochastic PDE
techniques. In addition to the physical law, the BME solution can assimilate other sources
of general and site-specific knowledge, including multiple-point nonlinear space/time
statistics, hard measurements, and various forms of uncertain (soft) information. There is
no need to explicitly solve the moment equations of the advection-reaction law since BME
allows the information contained in them to consolidate within the general knowledge
base at the structural (prior) stage of the analysis. No restrictions are posed on the shape of
the underlying probability distributions or the space/time pattern of the contaminant
process. Solutions of nonlinear systems of equations are obtained in four space/time
dimensions and efficient computational schemes are introduced to cope with complexity.
The BME solution at the prior stage is in excellent agreement with the exact analytical
solution obtained in a controlled environment for comparison purposes. The prior solution
is further improved at the integration (posterior) BME stage by assimilating uncertain
information at the data points as well as at the solution grid nodes themselves, thus leading
to the final solution of the advection-reaction law in the form of the probability
distribution of possible concentration values at each space/time grid node. This is the most
complete way of describing a stochastic solution and provides considerable flexibility
concerning the choice of the concentration realization that is more representative of the
physical situation. Numerical experiments demonstrated a high solution accuracy of the
computational BME approach. The BME approach can benefit from the use of parallel
processing (the relevant systems of equations can be processed simultaneously at each grid
node and multiple integrals calculations can be accelerated significantly, etc.). INDEX
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1. Introduction

[2] Modeling techniques generating predictive distribu-
tions of contaminant processes across space and time by
solving the relevant physical equations have a plethora of
applications in environmental sciences [e.g., Javandel et al.,
1984; Knox et al., 1993; Schnoor, 1996; Department of
Defense, 1997; Mynett, 1999; Dale and English, 1999].
Among other things, these techniques offer powerful visual
representations of reality in terms of accurate maps of the
spatiotemporal distribution of the natural processes of
interest. In view of the uncertainty characterizing these
distributions, the physical equation usually has the form
of a stochastic partial differential equation (PDE). Then, the
maps represent the solution of the stochastic PDE given the

possibly uncertain boundary/initial conditions of the situa-
tion. Two groups of techniques are commonly used for the
solution of stochastic PDE: (1) one group focuses on
obtaining solutions that are valid for specific realizations
of the PDE coefficients (e.g., Monte Carlo or realization-
based techniques [Adler, 1992; Spitz and Moreno, 1996]),
and (2) another group is concerned with the estimation of
stochastic moments [Kitanidis, 1986; Zhang, 2002]. Both
groups have advantages and drawbacks, and they should be
viewed as complementary tools for determining the behav-
ior of stochastic solutions [Srinivasan and Vasudevan, 1971;
Jordan and Smith, 1987; Flaherty et al., 1989].
[3] A different conceptual framework for obtaining sto-

chastic solutions of physical PDE is suggested by the
spatiotemporal Bayesian maximum entropy (BME) map-
ping approach introduced by Christakos [1990, 1991] in an
epistemic context. In the BME sense, the term ‘‘spatio-
temporal map’’ has a broader meaning than usual. In
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particular, the implementation of the BME approach to
solve a physical PDE differs from most standard PDE
techniques by distinguishing between three main stages of
physical knowledge processing and assimilation as follows
(Figure 1).
1. At the structural (prior) stage, BME generates an

initial probability distribution across space and time based
on the physical PDE as well as other forms of general
knowledge (primitive equations, multiple-point statistics,
etc.), whenever available.
2. At the metaprior stage, databases expressing site-

specific states of knowledge (e.g., uncertain observations,
new frequency distributions, or empirical charts) are
transformed into an operator form suitable for further
processing.
3. At the integration (posterior) stage, the initial solution

(1) is enriched by assimilating the site-specific data (2). This
final solution is not limited to a single realization but
includes the complete probability law at each space/time
point.
[4] A spatiotemporal map is thus viewed as representing

a solution of the physical law in the BME sense (1–3
above). As is proposed by Christakos [1992, 2000], in
theory two main techniques can be used in stage 1 above:
The so-called A technique, which does not need to solve the
stochastic moment equations associated with the physical
law, whereas the so-called B technique requires the solution
of the moment equations. Christakos and Hristopulos
[1998] examined several theoretical features of these tech-
niques. Serre and Christakos [1999] used a numerical
approach based on the B technique to study Darcy’s law
representing groundwater flow in porous media, whereas
Christakos et al. [1999] combined the B technique with
perturbation expansions and diagrammatic analysis. A nota-
ble advantage of the A technique over the B technique is
that it can be used in cases in which explicit solutions of the
moment equations are intractable or the raw moments are
not known. By focusing on the B technique, the previous
numerical studies left unanswered certain important com-
putational issues related to the efficient implementation of
the A technique across space and time. Therefore, in this
work we develop a systematic computational approach
based on the A technique to solve a stochastic PDE
representing the advection-reaction distribution of a pollu-
tant in a river. At the structural BME stage we calculate the
general knowledge-based probability density function
(PDF) of the pollutant at any point across space and time
by numerically solving systems of integrodifferential equa-
tions representing the physics of the situation. The obtained
results are found to be in excellent agreement with the exact
analytical solutions used for comparison. At the metaprior
stage we acquire and process different kinds of site-specific
knowledge, including hard (accurate) data and soft infor-
mation in the form of uncertain observations (interval data
and probability distributions). At the integration (or poste-
rior) stage the computational BME approach generates with
considerable efficiency informative PDF of the contaminant
concentration at the nodes of a regular space/time grid.
These BME solutions assimilate uncertain information
about the contaminant values at the solution nodes them-
selves, in addition to the measurements available at the data
points. The method imposes no restrictions on the shape of

the probability laws or the degree of space/time heteroge-
neity and can account for multiple-point nonlinear statistical
moments. Furthermore, BME features more flexible criteria
than most standard PDE techniques for choosing the most
appropriate, application-dependent solution at each point
(i.e., solutions that have the highest probability of occur-
rence, or satisfy a minimum prediction error criterion, or
offer a desired trade-off with regard to certain decision
criteria can be chosen, depending on the application).

2. Assimilation of General Knowledge by the
BME Approach: The Structural (Prior) Stage

2.1. Advection-Reaction Law as General Knowledge

[5] In the numerical application presented in this work,
the general knowledge (G) involves a physical law that
governs an advection-reaction process. This law is repre-
sented by a PDE and associated initial/boundary conditions
[Weber and DiGiano, 1996]. The complexity of similar
environmental systems often renders them difficult to
account deterministically for all the contributing factors in
the contaminant process. In that sense, stochastic space/time
solutions are reasonably preferred to deterministic model
predictions [Steinberg et al., 1996]. More specifically, we
consider the temporal evolution of a nondispersive mass
transport process along a river, in which case the physical
PDE equation describing the space/time distribution of the
component mass concentration X(p) is as follows

@

@t
þ q

@

@s

� �
X pð Þ ¼ �k X pð Þ; ð1Þ

where p = (s, t) denotes a space/time point (s is the one-
dimensional space coordinate along the river direction and t
is time), q is the downstream velocity (in [L ]/[T ]), and k is
the reaction rate (in 1/[T ]; k > 0). In order to account for
space/time correlations and random influences, the PDE (1)
is considered stochastic, in which case X( p) is modeled as a
spatiotemporal random field of contaminant concentrations.
The boundary/initial condition X0 = X(s = 0, t = 0) is a
Gaussian random variable with mean X0 and variance sX0

2,
i.e. X0 � N(X0, sX0

2). In real world applications such a
choice is justified on the basis of physical experience (e.g.,
earlier studies in the area of interest or modeling results
offer sufficient insight into the uncertainty of X0 in terms of
its probability function). From a research viewpoint,
equation (1) is chosen for the additional reason that an
exact solution exists, which can serve as a basis of
comparison for the solution derived by BME analysis at
the structural stage (it is a common practice to test new
methods in a controlled environment, since accuracy and
consistency cannot in principle be determined on the basis
of more ‘‘realistic’’ but complex situations in which the
exact solutions are unknown).

2.2. General Knowledge-Based PDF Solution

[6] Let the point vector pmap = ( pdata, pk) denote both the
set of m points pdata = (p1, . . ., pm) where data are available
and the points pk where stochastic solutions of the PDE (1)
are sought (usually on the nodes of a space/time grid). The
BME approach generates the prior PDF, fG, at all space/time
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points of the vector pmap based on the physical law linking
these points (the subscript ‘‘G’’ in fG denotes that the
probability model has been constructed on the basis of the
general knowledge; how this construction is carried out
mathematically is discussed by Christakos [1998, 2000]).
Subsequently, the fG is conditioned on case-specific data at
the integration stage (section 3 below) thus yielding the
final PDF, fK, at every grid node pk where a solution of
the PDE is sought (the subscript ‘‘K’’ in fK means that the
probability model has been updated (conditionalized) by
means of the site-specific knowledge). According to the
BME formulation, in a large number of physical applica-
tions the G can be expressed in terms of a suitable set of
moment equations as follows

ha pmap

� �
¼ ga xmap

� �
; ð2Þ

where a = 0, 1, . . ., N; the overbar denotes stochastic
expectation; xmap is the vector of random variables
associated with the space/time point-vector pmap; ha and
ga are sets of functions the form of which will be
determined on the basis of the advection-reaction law (1).
Let us set

ga xmap
� �

¼
Z

dCmap gA Cmap

� �
fG Cmap

� �
; ð3Þ

where Cmap is a realization of the possible concentration
values at pmap. Equation (3) can account for any kind of

space/time moments linking the random concentration
values at the space/time point vector pmap. The BME
approach permits the incorporation of single-point, two-
point and multiple-point moments of any order. As long as
these moments are physically obtainable in the context of
the available knowledge base, in principle there is no
limitation imposed on the multiplicity, the nonlinearity or
the order of moments that can be considered by BME.
Assume, e.g., that the set of space/time moments available
have the general form ga xmap

� �
¼
Q

i x
li;a
i ; where the �i

denotes product, the li,a are known integers, and the
subscript i can assume any combination of values from the
set {1, 2, . . ., m, k}; then, the PDF solution produced by
BME analysis at the structural stage is given by [Christakos,
2000]

fG Cmap

� �
¼ �

YN

a¼1
exp ma

Y
i
cli;a
i

h i
; ð4Þ

where � = exp[m0], and m0 is a normalization constant that
accounts for the mathematical constraint that the integral of
the PDF is always equal to 1. The calculation of the
unknown coefficients ma (a = 0, 1, . . ., N) that are
consistent with the physical law is required in order to fully
describe the prior PDF fG in practice.
[7] To obtain some numerical results, we consider space/

time points from the point vector pmap. We require that the
moments ga above include the means xi ¼ X pið Þ, the
variances si

2 = x2i � xið Þ2, and the noncentered covariances
Cij = X pið ÞX ð pjÞ, or the centered covariances cij = Cij � xi xj,

Figure 1. Standard and BME-based approaches to studying physical equations. Other forms of general
knowledge include empirical relationships, phenomenological laws, and higher-order multiple-point
statistics across space and time. Site-specific knowledge includes hard measurements, uncertain (soft)
data in the form of intervals, probability functions, fuzzy sets, etc.
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for all points of the vector pmap. The moments ga must be
consistent with the physical law (1) and the information
available about the uncertainty of X0 in terms of its
statistics. Following the discussion above, equation (2)
leads to the following set of equations that is appropriate
for our numerical formulation in a controlled environment
(Appendix A)

R R
dci dcj fG ci; cj

� �
¼ 1R R

dci dcj ci
@
@ti
þ q @

@si
þ k

� �
fG ¼ 0R R

dci dcj c2
i

@
@ti
þ q @

@si
þ 2k

� �
fG ¼ 0R R

dci dcj cj
@
@tj

þ q @
@sj

þ k
� �

fG ¼ 0R R
dci dcj c2

j
@
@tj
þ q @

@sj
þ 2k

� �
fG ¼ 0R R

dci dcj ci cj
@
@ti
þ q @

@si
þ k

� �
fG ¼ 0

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ð5Þ

where fG = fG(ci, cj; si, ti, sj, tj), and it is assumed that the
field X( p) is differentiable in the mean square sense
[Christakos, 1992]; the first equation of equation (5) is
the normalization condition for the PDF fG. Clearly, a
different pair of points from pmap will be assigned to a
different set of equation (5), etc. In light of the above, the
bivariate PDF associated with the pair of points ( pi, pj) is a
special case of equation (4) as follows

fG ci; cj

� �
¼ ��1 exp m1 ci þ m2 c

2
i þ m3 cj þ m4 c

2
j þ m5 ci cj

h i
;

ð6Þ

where � = exp[m0] and ma = ma( pi, pj), a = 0, 1, . . ., 5. The
form (6) is a result of the decision to account for up to second-
order space/time moments, which led to the consideration of
single variables and pairs of variables in (6). Coefficients ma
are needed at all points of pmap to fully define the prior PDF.
In this case, the system (5) consists of 6 nonlinear equations,
which are discretized and solved numerically with respect to
the 6 unknown ma for each pair (pi, pj). If, e.g., we are dealing
with M pairs of points from the vector pmap, we will have M
systems of 6 equations each to solve with respect to 6 � M
coefficients ma. As is expected, each of theM pairs of points is
associated with a different fG(ci, cj). Given the 6 � M
coefficients ma, the general knowledge-based PDF of the
contaminant distribution, fG(Cmap) is obtained from equation
(4). Note that an augmented form of (6) would have been
used if, e.g., we had decided to consider three-point statistics
as well, in which case equation (6) should include triplets of
variables (ci, cj, cl); etc. (a similar augmentation is not
assumed here, since no exact analytical solutions for the ma
values are available in such a case for comparison purposes;
see, also, section 2.3 below).
[8] In view of the analysis above, the key element at this

stage of the PDE solution procedure is the calculation of the
coefficients ma. These are first expressed analytically (sec-
tion 2.3), and then compared to the numerically estimated
coefficients in terms of the computational BME approach
(section 2.4).

2.3. Analytical Expressions for the BME Coefficients

[9] For comparison purposes, the following analytical
solution to the advection-reaction equation (1) is considered
in terms of contaminant field realizations

X pð Þ ¼ X0 exp � k� cqð Þt � cs½ 	; ð7Þ

where c (in 1/[L ]) is a Gaussian random variable with mean
�c and variance sc

2, i.e., c � N(�c, sc
2). The physical meaning

of c is the inverse of the process characteristic length. The c
appears in the temporal component of the realization, as
well. Hence we assume randomness in both the spatial and
temporal correlation ranges. The analytical solution fG of
the contaminant problem based on equation (7) will be used
for comparison with the numerical solution obtained by the
proposed computational BME technique at the structural
(prior) stage. For this purpose, first we need to find the
coefficients ma.
[10] More specifically, based on equations (6) and (7) and

using well-known properties of the Gaussian probability
law (Appendix B), the following exact analytical expres-
sions for the BME coefficients ma (a = 0, 1, . . ., 5) are
obtained in terms of the first and second order space/time
statistics of the contaminant field for all pairs of points of
the vector pmap,

m0 pi; pj

� �
¼ � ln 2p

ffiffiffiffiffiffi
Ji j

p� �
� x2i s

2
j þ x2j s

2
i � xi xj ci j þ cj i

� �h i
=2Ji j

m1 pi; pj

� �
¼ 2 xið Þ2 s2j � xj ci j þ cj i

� �h i
=2Ji j

m2 pi; pj

� �
¼ �s2j =2Ji j

m3 pi; pj

� �
¼ 2 xj

� �2s2i � xi ci j þ cj i
� �h i

=2Ji j

m4 pi; pj

� �
¼ �s2i =2Ji j

m5 pi; pj

� �
¼ ci j þ cj i
� �

=2Ji j

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ð8Þ

where Jij = si
2sj

2 � cijcji. The analytical expressions of the
means (xi, xj), variances (si

2, sj
2) and centered covariances

(cij) used in equation (8) are, also, given in Appendix B.

2.4. Numerical Solution of the BME System

[11] In this case, the unknown coefficients ma will be the
numerical solution of the BME system of equation (5) at
every pair of space/time points ( pi, pj) from the grid vector
pmap. By substituting equation (6) into (5) we get a system of
integro-differential equations (IDE) which are similar to the
first kind nonlinear Fredholm IDE [Goldberg, 1979]. In our
problem we seek a solution of IDE systems where all
unknowns are present in every equation. This situation,
however, does not fall into any of the well-studied IDE
groups. Moreover, the coefficients ma appear in the exponen-
tial term of the prior PDF (6) and, as the analytical expression
(8) and equation (B4) of Appendix B show, the ma themselves
depend on space/time exponentially, as well. The numerical
system (5) can be therefore sensitive to fluctuations in the
unknown ma values across space and time. Some interesting
computational issues related to the solution of system (5) for
the coefficients ma are discussed in section 2.5.
[12] In this section, we focus on the results obtained by

testing the numerical solution of equation (5) above with the
help of an experiment. The numerical experiment considers
contaminant leaking at the outfall of a wastewater treatment
plant. The origin of the testing area is at initial time t0 = 0
(in days) and location s0 = 0 (in km) along the downstream
direction, and the advection-reaction process is governed by
the law (1). Water velocity q and reaction rate k are assumed
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constants. Any number of data points and solution nodes
can be processed by the computational BME technique.
However, for numerical illustration purposes we examined
two controlled environments: the first environment assumed
a single datum, whereas the second environment involved a
cluster of data points.
2.4.1. One Datum Point and a Grid of Solution Nodes
[13] In this case we used a 4-D grid consisting of two

separate subgrids: One of them contains a single point p1
and the other one includes all solution nodes pk (also called,
estimation points); these two subgrids may be arbitrarily
located in space/time. Different space/time origins and grid
parameters were assumed for each one of the subgrids. The
values assigned to the physical problem parameters are
shown in the upper part of Table 1 (lines 2–7). The
numerical properties of the proposed technique were inves-
tigated assuming a resolution of Nt = 200 nodes in the
temporal domain. The resolution of the spatial domain, NV,
is then derived with the help of the CFL condition: see
equation (10). Focusing on a soft datum at p1 = (0.1 km,
0.05 days) and using the parameters values of the lower part
of Table 1 (lines 8–23), we solved for the coefficients
ma( p1, pk) at each node pk of a numerical grid with NS1

�
Nt1

� Nsk
� Ntk

= 1 � 1 � NV � Nt = 1 � 1 � 50 � 200
nodes: a total of 10,000 nodes. The correlation between the
points p1 and pk exhibits a pattern that depends on both the
relative location of the points and the physical problem
itself. The correlation coefficient is given by

r1k ¼ c1k =s1sk : ð9Þ

For illustration, Figure 2 depicts the emerging space/time
correlation patterns by plotting the jr1kj values on the
solution subgrid, for four possible locations of the data point
( p1). The plots used the exact values of the variances and
covariance of the random concentration field (Appendix B).
The physical behavior shown in Figure 2 requires some

Figure 2. Patterns of the absolute value of the correlation coefficient (jrxj) between four selected data
nodes and the mapping domain in space/time.

Table 1. The Parameters and the Values Used in Our Study

Parameter Symbol Value

Downstream velocity q 2 km day�1

Reaction rate k 0.5 day�1

Initial concentration mean X0 10 ppm
Initial concentration variance sX0

2 2 ppm2

Mean of parameter c �c 0.2 km�1

Variance of parameter c sc
2 0.005 km�2

Temporal domain size t = jk � �cqj�1 10 days
Spatial domain size V = 1/�c 5 km
Resolution in t-domain Nt 200 nodes
t1 temporal nodes in grid Nt1

1
tk temporal nodes in grid Ntk

Nt
Temporal step dt1 = t/Nt 0.05 days
Temporal step dtk dt1
Spatial step ds1 = jq dt1j 0.1 km
Spatial step dsk ds1
Resolution in V-domain NV = V/ds1 50 nodes
s1 spatial nodes in grid Ns1

1
sk spatial nodes in grid Nsk

NV
Spatial origin in (s1, t1) s10 0 km
Temporal origin in (s1, t1) t10 0 days
Spatial origin in (sk, tk) sk0 0 km
Temporal origin in (sk, tk) tk0 0.4 t = 4 days
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attention when solving the numerical system (5). At the
space/time points where r1k � 1 the bivariate PDF, fG(c1,
ck), displays singular behavior, since the corresponding
covariance matrix determinant tends to zero. This behavior
is expected when the points p1 and pk are close to each
other (in the special case p1 = pk, the bivariate PDF
degenerates to a univariate PDF). Figure 2 suggests that
there may exist high correlation regions even when p1 and
pk are at a considerable distance from each other (which
may be due to the advective form of equation (1)).
[14] The numerical estimates of the ma coefficients

showed an excellent agreement with the exact analytical
values. Another indicator of the effectiveness of the solution
technique is obtained by using the numerical ma values to
map the prior BME mean and standard deviation of the
contaminant across space/time. In Figure 3 these BME maps
are compared to the exact prior mean and standard devia-
tion. The corresponding error plots (numerical versus exact
values) of the mean and standard deviation, dmean =
xExact � xBME and ds = sExact � sBME, respectively, are also
shown. Note that the maxima of these errors correspond to
1% of the exact value at most, which demonstrates the high
solution accuracy of the computational BME technique. The
results of the numerical experiment were compared with
these obtained for a finer grid. It was found that the
concentration means and variances for the finer grid are
almost the same as those previously obtained for the coarser
grid, whereas the system’s root convergence behavior was
not affected by the use of a finer discretization.
[15] Furthermore, a sensitivity analysis was conducted for

perturbed values of the physical parameters of the problem
(q, k, X0, sX0

2, �c, and sc
2). The numerical experiment was

repeated assuming a resolution of Nt = 200 nodes along the
time direction using the new values of the physical param-
eters in Table 2. During each repetition of the experiment
we perturbed only one of the 6 physical parameters (the
others were kept unchanged). The domain sizes (determined
by V = �c�1 and t = jk � �cqj�1 in space and time,
respectively) were changed accordingly. For example, an
increased river velocity results in a reduction of the tempo-
ral correlation size. The variance of c showed some sensi-
tivity that might affect the PDE solution of contaminant
concentration, especially when the data points and the
solution nodes are separated by large space/time distances.
The larger the sc

2 is, the larger is the concentration mean at
distant solution nodes. Mathematically, this behavior is
explained by the presence of sc

2 in the exponential term
of the analytical expression for the concentration mean
(Appendix B). Physically, a larger sc

2 value implies that
higher contaminant concentrations dominate lower ones at
remote locations (this effect is displayed in Figure 9a).
Minor changes were also observed in the correlation coef-

Figure 3. BME calculated versus analytical (exact) prior mean �x, standard deviation sx and estimation
errors, dmean = �XExact � �XBME, and ds = sExact � sBME.

Table 2. Modified Values That Were Tested for the Physical

Parameters of the Problem

Parameter Symbol Perturbed Value

Downstream velocity q 4 km day�1

Reaction rate k 0.25 day�1

Initial concentration mean X0 20 ppm
Initial concentration variance sX0

2 1 ppm2

Mean of parameter c �c 0.4 km�1

Variance of parameter c sc
2 0.01 km�2
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ficient (jr1kj) profiles, since correlation between points p1
and pk is affected by changes in the values of the physical
parameters. However, the numerical behavior of system (5)
remained overall unaffected, and the solutions were accord-
ingly regulated by the new parameter values.
2.4.2. Clusters of Data Points and Solution Grid Nodes
[16] In this case the space/time data points ( pdata)

formed a cluster and the solution nodes (pk) formed a
regular grid. The physical parameters are the same as in the
preceding case 1. However, we now have a 4-D grid of
Ns1

� Nt1
= 6 � 60 data nodes in space/time and Nsk

� Ntk
=

10 � 40 solution nodes: a total of 144,000 nodes. Table 3
shows the current choice of grid parameters which differ
from their counterparts in Table 1. The new grid parameters
have been selected taking into account the increased grid
size used in this case. As in case 1, numerical instability
problems were avoided by selecting configurations of data
points and solution grid nodes that do not exhibit correlation
values close to 1. By iterating over these nodes, solutions
for the corresponding ma coefficients were derived at the
prior BME stage. The numerical results obtained in this case
are of similar accuracy as those obtained in case 1. A
relevant plot based on the results of case 2 will be shown (in
Figure 8).

2.5. Computational Issues

2.5.1. On the Numerical Solution of the BME System
[17] A Newton-Raphson nonlinear solver was used for

the solution of the system of equation (5). There exist
several variants of this method based on Newton’s root
finding scheme [Conte and De Boor, 1980]. These variants
can be helpful with respect to case-specific issues, e.g.,
when the parameter does not always converge to the
solution or when the derivatives of the system’s coefficients
can not be expressed explicitly. Regarding the latter issue,
an indirect calculation of the derivatives may lead to
increased iterations, thus reducing cost effectiveness. The
calculation of these derivatives is often a reason for choos-
ing other iterative methods, e.g., secant methods in which
derivatives are approximated by differences [Ortega and
Rheinboldt, 1982]. In the present case the derivatives of the
coefficients ma are derived directly from (5); the discretized
system of equations is presented later. Convergence of the
Newton-Raphson technique toward a solution is an impor-
tant factor that depends on the degree of proximity of the
initial guess to the true value [Atkinson, 1989]. This factor
can create some difficulties in obtaining numerical solutions
when dealing with sensitive systems, such as equation (5).
For example, the Newton-Raphson step may overshoot the
iteration solution away from the actual root, thus misdirect-
ing the system to unstable regions. An additional degree of
complexity stems from the elaborate form of equation (5), in
which case the existence of multiple local minima in the
solution domain is a realistic possibility. The standard
Newton-Raphson method advances with equal-sized steps,
and if drawn into the area of local minima it may lock
around one of them failing to converge to the actual root. To
remedy the situation we adopted a globally converging
Newton-Raphson algorithm based on line searching and
backtracking along the solution gradient that utilizes steps
of variable sizes [Nocedal and Wright, 1999]. Given the
sensitivity of the system unknowns with respect to changes

in the space/time variables, numerical tests showed that the
system makes intense use of the line search procedure to
achieve convergence to the actual root (with a negligible
computational cost). For additional support, we refined the
initial guess at each space/time step by using an equally
weighted mean of the calculated ma values at the closest
neighboring nodes visited in previous iterations, thus lead-
ing to very satisfactory numerical results.
2.5.1.1. The 4-D Stencil
[18] We are dealing with a 4-D problem in space/time,

which presents some interesting computational modeling
challenges. Typical multidimensional problems display one
or more spatial dimensions plus time, whereas in our case it is
required to consider equations in pairs of points from pmap.
To discretize equation (5), we propose a physical interpreta-
tion of the problem as follows: Based on the fact that we are
dealing with two-point statistics, the 4-D discretization
system (si, ti, sj, tj) is viewed as the cross-product, (si, ti) �
(sj, tj), of two 2-D subsystems (Figure 4a). In this way, pi = (si,
ti) and pj = (sj, tj) are seen as two interacting but physically
separated subsystems in space/time (this approach also
allows for a meaningful extension to more than two points,
when one decides to consider multiple-point statistics). A
convenient graphical representation of the above arrange-
ment is given in Figure 4b by means of a 3-D cube (si, ti, sj)
evolving in time tj. The coefficients ma( pi, pj) are then
discretized with respect to each of the subsystems used.
2.5.1.2. Discretization Scheme
[19] An explicit scheme is used to solve system (5) for

each pair of points ( pi, pj). A variety of discretization
schemes exists, some of which focus on advective transport
PDE [e.g., Farthing and Miller, 2000]. Although the
physical law (1) is expressed as a stochastic PDE, in this
work we are not solving a typical PDE problem. As a result,
a physical interpretation of the problem is helpful in making
a sensible choice of the discretization scheme. In particular,
system (5) consists of functionals in which the law (1) is
embedded. Since (5) is essentially a functional form of
equation (1), it displays key characteristics of the particular
family of equations that (1) belongs to, namely, the family
of hyperbolic PDE. We subsequently selected the first-order
accurate Lax-Friedrichs scheme, commonly used in the
explicit solution of hyperbolic PDE [Strikwerda, 1989], as
the discretization scheme for equation (5). The process of
discretizing the BME system (5) and obtaining algebraic
expressions for the equations and their derivatives is pre-
sented in Appendix C. A simplified schematic representa-
tion of the 4-D stencil arising from this discretization is

Table 3. Parameters Taken Different in Case 2 Than Shown in

Table 1

Parameter Symbol Value

t1 temporal nodes in grid Nt1
60

tk temporal nodes in grid Ntk
40

s1 spatial nodes in grid Ns1
6

sk spatial nodes in grid Nsk
10

Spatial origin in (s1, t1) s10 0 km
Temporal origin in (s1, t1) t10 0 days
Spatial origin in (sk, tk) sk0 0.4 V = 20 km
Temporal origin in (sk, tk) tk0 0.6 t = 4 days
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shown in Figure 5. Regarding the numerical boundary/
initial conditions, the Lax-Friedrichs scheme requires
knowledge of all variable values at the initial times (ti = tj
= 0) as well as at the lower (upstream) spatial boundaries.
Schematically, using Figure 4b this translates into requiring
knowledge of the coefficients ma at every node in the first
space/time cube, as well as the face-nodes on the remaining
cubes that correspond to ti = si = sj = 0.
[20] Our earlier comments, namely that equation (5) dis-

play hyperbolic PDE characteristics, are supported by
numerical findings and experiments. For example, our tests
showed that root-finding inaccuracies due to a poor initial
guess propagate in the form of discontinuities throughout
the stencil (a similar situation can be, also, observed in
hyperbolic PDE solutions [Lapidus and Pinder, 1982]). As
is the case with any hyperbolic system, the Courant-Frie-
drichs-Lewy (CFL) condition

R ¼ v�t=�sij j � 1 ð10Þ

was enforced to assure stability of the PDE numerical
solution along the spatial discretization direction si, where
v is a characteristic speed that can be either a constant or a
variable. We adopted the equality relationship in equation
(10), which keeps numerical dispersion and dissipation
small in the solution of hyperbolic PDE [Strikwerda,
1989].
2.5.2. Performance and Numerical Integration
[21] At each node (si, ti, sj, tj) of the 4-D discretization

grid, the numerical problem of solving for ma(pi, pj) = ma(si,
ti, sj, tj), a = 0, 1, . . ., N (N = 5 in the case of equation (5))
requires the following computational effort: (1) N function
calculations plus 1 for the normalization condition, whereas
the m0 is calculated as a function of the remaining N
coefficients; (2) N2 derivatives for the Jacobian matrix with
respect to the unknown coefficients; and (3) solution of a
N � N linear system at each Newton-Raphson iteration. At
each node of the space/time grid, the nonlinear solver
approaches the root fast (convergence is normally achieved
within only a few Newton-Raphson iterations). The main
computational cost lies in the calculation of the double
integrals of system (5) and its Jacobian. We have used an
efficient integration method, namely, a 32-point Gauss-

Legendre Quadrature (often referred in the literature as
GQ) with adaptive integration limits [Atkinson, 1989] (see
also section 2.5.2.1). The GQ was found to outperform by a
full order of magnitude Newton-Cotes-based integration
formulas for the same accuracy level in single integral
calculation tests.
2.5.2.1. Integrating Intervals
[22] An adequate understanding of the behavior of the

physical system requires the consideration of a numerical
grid that extends to at least one characteristic length in
space and one in time. However, the randomness of the
inverse correlation length c does not allow the exact
knowledge of these quantities. Therefore they are approxi-
mated using a spatial subdomain of size V = �c�1 (in [L ])
and a temporal subdomain of size t = jk � �cqj�1 (in [T ]).
The numerical processing of this task is inherently serial,
i.e., one needs to know values at previously visited nodes
in order to advance through the grid. We take advantage of
this property to select adaptive integration limits as fol-
lows: The integration intervals are set with respect to the
means and variances calculated for the previously visited
grid node. Tchebyscheff’s inequality [Papoulis, 1991] is
used to find values of the integration variables ci and cj

around their respective means where the integrands in (5)
are nonzero. Following this approach in a series of
numerical integration tests we found that for intervals
ranging within 6 standard deviations or more around the
means at a set of points, the numerically calculated double
integral retained a nine digit accuracy. The intervals on the
starting grid node were obtained through the boundary/
initial conditions assumed.
2.5.2.2. Parallel Processing
[23] The computational performance of BME can be

improved by using parallel processing (e.g., multigrid
techniques are often applied to elliptic PDE that allow
parallel processing of small-sized grids by decomposing
the original stencil [McCormick, 1987; Smith et al., 1996]).
The BME-based code’s performance was improved with the
help of rudimentary tests implementing parallel processing.
Code profiling showed that a larger amount of execution
time (almost 14%) is spent on double integration, whereas
about 8.5% of the time is spent for the calculation of
exponential functions. The 5 function calculations involved

Figure 4. The four-dimensional (4D) representation of the numerical problem may be depicted
graphically either as (a) the cross-product between the 2D spaces (si, ti) � (sj, tj) or (b) as a 3D cube (si, ti,
sj) evolving with time tj.
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in equation (5) follow with about 7% each, and their 25
derivatives calculations trail at around 1.3% of cpu time
each. Accordingly, we addressed the potential of paralleliz-
ing some of these processes. Two different tests were
conducted in which we used the MPI standard [Gropp et
al., 1999] and 6 SGI Origin 2000 processors to run parallel
jobs. In the first test, we focused on parallelizing the double
integration in ci and cj and distributed the load to 4
processors. The main test application ran in parallel on

average 2.86 times faster than the serial execution on the
same machine (compared to an expected linear speed-up
factor of 4 using as many processors). On the other hand, in
the second parallel processing test we distributed the load of
calculating the functions and their derivatives to multiple
processors. The code was rearranged so that each one of 5
processors was assigned to calculate a function and its
derivatives throughout the Newton-Raphson call at a given
( pi, pj) stencil node. We mentioned earlier that the code
spends considerable time inside the functions and the
derivatives (in fact, this could cumulatively occupy about
70% of the execution time). By splitting this load onto 5
different processors we found that the code performs on the
average 2.7 times faster than the serial execution time
required on the same machine. These tests clearly demon-
strate that, even at an elementary level the proposed BME
method is open to computational parallelization that
improves its performance considerably compared to serial
processing.

3. Assimilation of Site-Specific Knowledge by the
BME Approach: Metaprior and Integration
(Posterior) Stages

[24] Following the general knowledge (G) assimilation
stage is the metaprior stage at which the site-specific
knowledge (S) is gathered and evaluated (Figure 1). In
principle, S includes accurate real-time measurements and
experimental outcomes which constitute the hard data body,
as well as several types of uncertain observations repre-
sented as soft data. At the final (posterior or integration)
stage, these two knowledge bases are combined (K = G [ S)
and logically processed to yield the final PDF (fK) and
predicted contaminant concentrations at the solution nodes
of the space/time domain. Hence, by deriving the complete
PDF of the contaminant field at each grid node pk, the BME
method goes further than merely obtaining a solution for the
stochastic PDE (1) in the usual (realization or statistical
moment) sense. In deriving the solutions fK we will use not
only general knowledge (the advection-reaction law) but all
available site-specific knowledge, as well (it will be shown
below that S takes various forms, one of which is uncertain
information at the solution grid nodes themselves).
[25] Two sorts of soft data commonly encountered at the

metaprior stage are as follows: (1) measurements within an
interval of uncertainty large enough so that they cannot be
considered as unique hard data; and (2) information avail-
able in the form of case-specific probability densities
fS(Csoft). In these two cases the corresponding total knowl-
edge (K)-based PDF at the integration stage are given by
[Christakos, 1998]

fK ckð Þ ¼ A�1

Z
I

dCsoft fG Csoft ; Ck

� �
ð11Þ

and

fK Ckð Þ ¼ A�1

Z
dCsoft fS Csoft

� �
fG Csoft; Ck

� �
ð12Þ

respectively, where I is the soft interval domain and A is a
normalization operator. Assimilation techniques for a

Figure 5. Representation of the discretization stencil in
the 4D space (si, ti, sj, tj) depicted as a cube (si, ti, sj)
evolving with time tj. Using the symbolism in Appendix C,
the solid circle A in Figure 5a represents the node at which
numerical solution is sought for the unknowns mriþ1;rjþ1

azi ;zj
(a =

0, 1, . . ., 5). The open circles denote grid nodes where the
coefficients ma, (a = 0, 1, . . ., 5) are known. In particular,
Figure 5a depicts the nodes A and B (corresponding to
mri;rjþ1
azi ;zj

) where values are taken at t = trj+1; in Figure 5b we
show the nodes used at time t = trj, i.e., the values of m

riþ1;rj
azi ;zj

at C, mri;rjaziþ1;zj
at D, mri;rjazi�1;zj

at E, mri;rjazi ;zjþ1 at F, and mri;rjazi ;zj�1 at G.
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variety of other soft (uncertain) data types, as well as insight
about multipoint BME solutions are given by Christakos
[2000].
[26] In light of equations (11) and (12), the stochastic

solution (fG) of the physical equation (1) obtained earlier is
updated by using site-specific interval and probabilistic data
to condition the prior PDF, thus leading to the newPDF fK. As
before, for numerical illustration an interval datum was
assumed at the space/time point p1 = 0.1 km, 0.05 days.
This interval datum was created as follows: First, concen-
trations were generated by a random field simulator based on
equation (7) with random X0 and c values drawn from the
respective probability laws. Then, each simulated value zwas
randomly placed within an interval of uniformly distributed
values around z, thus creating the desired interval datum.
Moreover, indirect information about the contaminant is
often available, say, in the form of a locally valid tracer
experiment. Such information is viewed as an additional soft
datum at each solution node. For example, Figure 6 shows an
interval datum at p1 together with the BME-based fK at 12
selected solution nodes in the region where fG was calculated
earlier. These fK (which show a variety of different shapes)
have been conditioned on the local soft datum at p1 as well as
on the soft data available at the solution nodes (the fK plots in
Figure 6 have been properly scaled).
[27] Figure 7 displays a series of space/time fK which

differ from the PDF of Figure 6 in two ways: (1) Figure 7 is
concerned with the case of probabilistic site-specific data,
instead of interval data. This situation may arise, e.g., when
there exists a series of measurements at a point or when the
soft datum is the result of some fitting procedure. In this
numerical experiment we assumed knowledge of the meas-
urement mean (in ppm) at each solution node (obtained

from simulated values at the soft datum point) and a
common measurement variance (0.1 ppm2). (2) Figure 7
assumes no additional local information (in the form of
uncertain data) at the solution nodes. As a result, fG was
conditioned only on the probabilistic datum at p1 = (0.1 km,
0.05 days), thus producing the twelve updated PDF fK
shown in Figure 7. These PDF have distinct shapes across
space and time. Also, some of them have very large widths
(due to large standard deviations) and, as a result, their
shapes are only partially displayed. In Figure 8 probabilistic
data exist at two points in space/time, p1 = (0.3 km, 0.5
days) and p2 = (0.3 km, 2.0 days), whereas no additional
soft data were assumed at the solution grid nodes. The
resulting BME-based fK at four points are also shown in
Figure 8.
[28] Given the fK of contaminant concentration across

space/time we often seek particular forms of concentration
values (realizations), such as the conditional mean, median
or mode, depending on the application. The conditional
mean (or BMEmean) at a point pk, e.g., is

ĉk;mean ¼ X pkð Þ Cdataj ¼
Z

dckck fK ckð Þ: ð13Þ

For numerical illustration, BMEmean concentrations at all
solution nodes of the space/time grid are plotted in Figure 9.
Two cases are examined: (1) without additional soft data at
the solution nodes and (2) with probabilistic data at the
solution nodes. The plot of Figure 9a (case 1) depicts the
effect on the prior concentration mean (plotted in Figure 3)
of the site-specific knowledge at point p1. As was suggested
in Figure 2, the low correlation between the soft datum
point and remote solution nodes has a minimal effect on
mean concentrations at the solution nodes pk. However, the

Figure 6. Interval (soft) datum at point p1 = (0.1 Km, 0.05 Days) and BME posterior PDF at several
solution grid nodes pk with interval soft data.
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Figure 7. Probabilistic (soft) datum at point p1 = (0.1 Km, 0.05 Days) and the BME posterior PDF at
several solution grid nodes.
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Figure 8. Probabilistic (soft) data at points p1 = (0.3 Km, 0.5 Days) and p2 = (0.3 Km, 2.0 Days) (no
additional soft data are assumed at the solution grid nodes). The resulting BME posterior PDF at four
solution nodes are also shown.
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situation can change considerably when additional prob-
abilistic (soft) data are introduced at the solution nodes pk
(case 2). In particular, Figure 10 depicts a series of PDF fK
at the same solution nodes as in Figures 6 and 7, the
difference being that probabilistic data are now assumed
available at these nodes, as well. The combined effect on the
BMEmean of the probabilistic datum at p1 and the
additional probabilistic data at pk is illustrated in Figure
9b. As a matter of fact, it turns out that the presence of even
a small number of case-specific data enable BME to provide
considerable information about the physical process in
terms of the final solution ( fK). To our knowledge, no other
stochastic method has so far been able to accommodate both
a large collection of general knowledge bases and a rich

variety of site-specific information bases in a scientifically
rigorous framework, thus generating informative PDF of the
contaminant variation across space and time.
[29] The computational BME technique implemented to

solve the unsteady state, advection-reaction equation (1) in
one spatial dimension can be extended without any con-
ceptual difficulty to higher spatial dimensions. In the case,
e.g., of a 2-D advection-reaction process, the s = (s1, s2) will
denote the corresponding spatial coordinates, the scalar
downstream velocity q will be replaced by the flow velocity
vector q and, as a result, the term q @

@s will become q � r.
The structural PDF fG(ci, cj) for the pair of points ( pi, pj)
will be still given by equation (6). The coefficients ma in
equation (6) are now functions of 6 variables (s1i, s2i, ti, s1j,

Figure 9. BME mean at solution grid nodes using a probabilistic datum at point p1 = (0.1 km, 0.05
days), (a) without any additional soft datum at the solution nodes and (b) in the presence of a second
probabilistic datum at each solution node.

Figure 10. Probabilistic soft datum at point p1 = (0.1 km, 0.05 days) and the BME posterior PDF at
several solution grid nodes with additional probabilistic data at the solution nodes.
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s2j, tj) instead of 4, so that the corresponding discretization
is a straightforward extension of that in Appendix C (i.e.,
from a 4-D to a 6-D stencil). Using the explicit scheme of
this work, the numerical complexity increases linearly with
the number of nodes so that the solution of the 2-D
advection-reaction will require additional computational
time but no major conceptual changes in the approach
presented in the preceding sections will be necessary.
Finally, the BME approach can be used in single-point or
multipoint solution situations (i.e., one can produce uni-
variate probability distributions at each solution node sep-
arately, as well as multivariate probability distributions at
several space/time nodes simultaneously).

4. Discussion-Conclusions

[30] We have presented a novel computational technique
for solving physical PDE in site-specific environments. The
technique is based on the BME theory and it introduces
solutions at every space/time point in the form of complete
PDF, which do not only account for the physical law of
interest but also for a host of other general and site-specific
knowledge sources (often available in real world situations).
More specifically, not only does the BME-based computa-
tional technique produce realistic maps across space and
time by solving the stochastic law governing the underlying
physical processes but, in addition, these maps can embody
other forms of general knowledge (empirical charts, multi-
ple-point statistics, constitutive relationships, etc.) as well as
case-specific information (generated by a variety of meas-
uring devices, including those involving considerable sour-
ces of uncertainty). Yet another advantage of the BME-
based solution of a physical PDE over most standard PDE
methods is that the former can improve the final solutions
by incorporating uncertain information at the solution nodes
themselves.
[31] We illustrated numerically the proposed technique

in a contamination environment, which involved a repre-
sentation of the advection-reaction process in terms of a
PDE in space/time, the relevant boundary/initial condi-
tions, and a set of hard data and soft concentration
information (of the interval and the probabilistic types).
We obtained numerical solutions for a system of nonlinear
equations in 4 dimensions and introduced efficient ways to
cope with complexity (due to higher dimensions) by
observing the physics of the problem. Considering the
space/time coordinates as separate but interacting subsys-
tems for discretization purposes can be helpful in dealing
with problems in higher dimensions (e.g., when investigat-
ing physical problems in 2 or 3 spatial dimensions plus
time). The study was conducted in a controlled environ-
ment where the solution of the physical PDE was known
in advance, thus allowing the evaluation of the proposed
technique by comparing its solutions to the exact ones at
the prior stage. No other numerical PDE techniques exists
that share the salient features of the BME-based technique
at the integration stage (e.g., accounting for various sorts
of soft data at the solution nodes and uncertain observa-
tions at other locations, in addition to general knowledge
in the form of physical law). As a result, our computa-
tional analysis at the integration stage cannot be easily
compared to other numerical techniques for solving sto-
chastic PDE.

[32] Certainly, in the majority of real world applications
the analytical (exact) solution of the relevant physical PDE
is not known. Even in those special cases in which explicit
expressions are available, the existence of higher-order
moments may create a complex environment. In the BME
context, there is no need to explicitly solve the equation
representing the physical law, since BME allows the infor-
mation contained in the law to be consolidated implicitly
into the general knowledge base considered at the structural
(prior) stage. Therefore, in principle, BME poses no
restrictions on the form of the physical equation or on the
space/time pattern of the natural fields. However, as is the
case with most numerical techniques, under certain circum-
stances (complex governing laws, highly involved expres-
sions of observational uncertainty, etc.) a full numerical
implementation of the proposed technique could be
demanding in terms of computational resources. One of
the directions of future work would focus on numerical
issues related to more elaborate forms of general knowledge
and site-specific data. Computationally, e.g., it should be
more expensive to deal with higher-order multiple-point
moments since both, the size of the nonlinear system will
increase (to accommodate the extra moments and unknown
Lagrange multipliers), and the integration order will
increase by 1 for each additional point [Hristopulos and
Christakos, 2001]. Investigations in code parallelization
clearly suggested that further studies could benefit from
the use of parallel processing. The promising results
obtained so far imply that the numerical system of equa-
tions can be processed simultaneously at each grid node and
multiple integrals calculations can be accelerated signifi-
cantly, assuming the availability of high-quality multiproc-
essor hardware and the implementation of multipoint GQ
integrations.

Appendix A

[33] Assume that the physical constraints ga include the
mean xi ¼ X pið Þ, the variance x2i ¼ X 2 pið Þ and the (non-
centered) covariance Cij = X pið ÞX ð pjÞ for all elements of the
point vector pmap. The corresponding ga functions are as
follows

g0 xmap
� �

¼ 1; g3 xj
� �

¼ xj

g1 xið Þ ¼ xi; g4 xj
� �

¼ x2j

g2 xið Þ ¼ x2i ; g5 xi; xj
� �

¼ Ci j

9>=
>;; ðA1Þ

where g0 xmap
� �

¼ 1 is the normalization constraint for the
PDF fG. Clearly, a different pair of points will be associated
with a different set of functions ga. Taking into account the
physical law (1), the associated functions ha for any two
points pi, pj of the vector pmap will be

h0 xi; xj
� �

¼
R R

dcidcj fG ci;cj

� �
¼ 1

h1 xi; xj
� �

¼ �k�1
R R

dci dcj ci @=@ti þ q@=@sið Þ fG
h2 xi; xj
� �

¼ � 2kð Þ�1 R R
dci dcj c2

i @=@ti þ q@=@sið Þ fG
h3 xi; xj
� �

¼ �k�1
R R

dci dcj cj @=@tj þ q@=@sj
� �

fG

h4 xi; xj
� �

¼ � 2kð Þ�1 R R
dci dcj c

2
j @=@tj þ q@=@sj
� �

fG

h5 xi; xj
� �

¼ �k�1
R R

dci dcj ci cj @=@ti þ q@=@sið Þ fG

9>>>>>>>>>=
>>>>>>>>>;
;

ðA2Þ
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where fG = fG(ci, cj; si, sj, ti, tj), and assuming that the field
X( p) is differentiable in the mean square sense [Christakos,
1992]. By combining equations (A1) and (A2) we obtain
the system of equation (5).

Appendix B

[34] Given the first two moments of a bivariate random
variable, the pdf that describes the variable is

fG ci;cj

� �
¼ 1

2p cxj j1=2
exp � 1

2
C � xð ÞT c�1

x C � xð Þ
� �

; ðB1Þ

where (C � x)T = (ci � xi cj � xj), and cx =
�
ci i ci j
cj i cj j

�
is

the centered covariance matrix. It is required that

cxj j ¼ ci i ci j
cj i cj j

����
���� ¼ s2i s

2
j � ci jcj i 6¼ 0 ðB2Þ

The inverse of the covariance matrix cx is

c�1
x ¼ ci i ci j

cj i cj j

� ��1

¼ 1

s2i s
2
j � ci jcj i

cj j �ci j
�cj i ci i

� �
: ðB3Þ

By expanding equation (B1) we regrouped the resulting
terms with respect to ci, ci

2, cj, cj
2 and cicj. Then, by

comparing the terms of equation (B1) with those of equation
(6) we can find the exact analytical expressions for the
coefficients ma(pi, pj), a = 0, 1, . . ., N (N = 5, in this case).
Note that as equation (8) suggests, the exact expressions for
ma( pi, pj) at each location (si, ti, sj, tj) are obtained by
analytically calculating the means, variances, and covar-
iances for that location. More specifically, we find

xw ¼ X sw; twð Þ
¼ exp �k tw½ 	X0 exp 0:5 q tw � swð Þ 2�cþ q tw � swð Þs2c

� �� �
;

ðB4Þ

s2w ¼ X 2 sw; twð Þ � xw
2

¼ exp �2k tw½ 	 s2X0
þ X0

� �
� exp 2 q tw � swð Þ �cþ q tw � swð Þ s2c

� �� �
� xw

2 ðB5Þ

for w = i, j, and

ci j ¼ X si; tið ÞX sj; tj
� �

� X si; tið Þ X sj; tj
� �

¼ exp �k ti þ tj
� �� �

s2X0
þ X0

� �
� exp 1

2
q ti þ tj
� �

� si þ sj
� �� �

2�cþ q ti þ tj
� ����

� si þ sj
� �

Þs2c 	
�
� xi xj: ðB6Þ

In the previous calculations we have made use of the fact that the
random variables X0 and c are independent, as well as the

following relationship

exp Dcð Þ ¼
Z 1

�1
dc exp Dcð Þ 1ffiffiffiffiffiffiffiffiffiffi

2ps2c
p exp � c� �cð Þ2

2s2c

" #

¼ exp
1

2
D 2�cþ Ds2c
� �� �

;

where c is the random variable defined previously and D is
a constant. Note the exponential dependence of the mean
and variance on the distribution of c. In section 2.5 we saw
its significance in the evolution of X(s, t) in space/time.

Appendix C

[35] In the following the subscripts r and z refer to
temporal and spatial grid nodes, respectively. The numerical
solution of the equation system (5) involves three basic
steps.
1. Consider the PDF fG(ci, cj) in equation (6) at times ti =

tri+1 and tj = trj+1.
2. Expand the functions in equation (5) by discretizing

the derivatives involved.
3. Calculate the Jacobian of the functions with respect to

the coefficients ma, a = 0, 1, . . ., N (N = 5, in this case).
[36] The system of equation (5) in step 1 gives

F1 ci;cj

� �
¼
Z

dcj

Z
dcici

@

@ti
þ q

@

@si
þ k

� �

� exp m riþ1;rjþ1

0zi ;zj
þ m riþ1;rjþ1

1zi;zj
ci

h
þ m riþ1;rjþ1

2zi;zj
c2
i

þm riþ1;rjþ1

3zi;zj
cjþm riþ1;rjþ1

4zi;zj
c2
j þm riþ1;rjþ1

5zi;zj
cicj

i
¼ 0;

ðC1aÞ

F2 ci;cj

� �
¼
Z

dcj

Z
dcic

2
i

@

@ti
þ q

@

@si
þ 2k

� �

� exp m riþ1;rjþ1

0zi ;zj
þ m riþ1;rjþ1

1zi;zj
ci

h
þ m riþ1;rjþ1

2zi;zj
c2
i

þm riþ1;rjþ1

3zi;zj
cjþm riþ1;rjþ1

4zi;zj
c2
j þm riþ1;rjþ1

5zi;zj
cicj

i
¼ 0;

ðC1bÞ

F3 ci;cj

� �
¼
Z

dcj

Z
dcicj

@

@tj
þ q

@

@sj
þ k

� �

� exp m riþ1;rjþ1

0zi ;zj
þ m riþ1;rjþ1

1zi;zj
ci

h
þ m riþ1;rjþ1

2zi;zj
c2
i

þm riþ1;rjþ1

3zi;zj
cjþm riþ1;rjþ1

4zi;zj
c2
j þm riþ1;rjþ1

5zi;zj
cicj	 ¼ 0;

ðC1cÞ

F4 ci;cj

� �
¼
Z

dcj

Z
dcic

2
j

@

@tj
þ q

@

@sj
þ 2k

� �

� exp m riþ1;rjþ1

0zi;zj
þ m riþ1;rjþ1

1zi;zj
ci

h
þ m riþ1;rjþ1

2zi;zj
c2
i

þm riþ1;rjþ1

3zi;zj
cj þ m riþ1;rjþ1

4zi ;zj
c2
j þ m riþ1;rjþ1

5zi ;zj
cicj	 ¼ 0;

ðC1dÞ

and

F5 ci;cj

� �
¼
Z

dcj

Z
dcicicj

@

@ti
þ q

@

@si
þ k

� �

� exp m riþ1;rjþ1

0zi ;zj
þ m riþ1;rjþ1

1zi;zj
ci

h
þ m riþ1;rjþ1

2zi;zj
c2
i

þm riþ1;rjþ1

3zi;zj
cjþm riþ1;rjþ1

4zi;zj
c2
j þm riþ1;rjþ1

5zi;zj
cicj	 ¼ 0:

ðC1eÞ
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For step 2, we use the first-order accurate Lax-Friedrichs scheme,

according to which the temporal and spatial derivatives are

approximated by, respectively,

@m
@t

ffi �m
�t

¼
mrþ1
z � 1

2
mrzþ1þ mrz�1

� �
�t

; and
@m
@s

ffi �m
�s

¼
mrzþ1 � mrz�1

2 �s
:

On the last spatial grid node the above derivatives can be

approximated without the use of the unknown mrz+1, by substituting
it, for example, with mz

r. By applying the discretization scheme to

equation (C1) we obtain, e.g., for F1(ci, cj; si, ti, sj, tj):

F1 ci;cj

� �
¼
Z

dcj

Z
dcici exp m riþ1;rjþ1

0zi;zj
þ m riþ1;rjþ1

1zi;zj
ci

h

þ m riþ1;rjþ1

2zi;zj
c2
i þ m riþ1;rjþ1

3zi;zj
cj þ m riþ1;rjþ1

4zi;zj
c2
j

þ m riþ1;rjþ1

5zi;zj
cicj

i� 1

�ti

�
m riþ1;rj
0zi;zj

�1

2
m ri;rj
0zi�1; zj

þm ri;rj
0zi�1;zj

� �� �

þci m riþ1;rj
1zi ;zj

� 1

2
m ri;rj
1ziþ1;zj

þ m ri;rj
1zi�1;zj

� �� �

þc2
i m riþ1;rj

2zi;zj
� 1

2
m ri;rj
2ziþ1;zj

þ m ri;rj
2zi�1;zj

� �� �

þcj m riþ1;rj
3zi ;zj

� 1

2
m ri;rj
3ziþ1;zj

þ m ri ;rj
3zi�1;zj

� �� �

þc2
j m riþ1;rj
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� 1

2
m ri;rj
4ziþ1;zj
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� �� �

þcicj m riþ1;rj
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� 1

2
m ri;rj
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þ m ri ;rj
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� �� ��

þ q

2 �si

�
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� �
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� �

þc2
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� �
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� �

þc2
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4ziþ1;zj
� m ri;rj

4zi�1;zj

� �
þ cicj

m ri;rj
5ziþ1;zj

� m ri;rj
5zi�1;zj

� ��
þ k
�

¼ 0; ðC2aÞ

F2 ci;cj

� �
¼
Z

dcj

Z
dcic

2
i exp

�
m riþ1;rjþ1

0zi;zj
þ m riþ1;rjþ1

1zi;zj
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þ m riþ1;rjþ1

2zi ;zj
c2
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3zi ;zj
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j
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�
1

�ti

��
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� 1

2
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2
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� 1

2
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� �� �
þ c2

j

� m riþ1;rj
4zi;zj

� 1

2
m ri;rj
4ziþ1;zj

þ m ri;rj
4zi�1;zj

� �� �
þ cicj

� m riþ1;rj
5zi;zj

� 1

2
m ri;rj
5ziþ1;zj

þ m ri;rj
5zi�1;zj

� �� ��

þ q

2�si

�
m ri;rj
0ziþ1;zj

� m ri ;rj
0zi�1;zj

� �
þ ci m ri;rj

1ziþ1;zj
� m ri;rj
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� �

þc2
i m ri;rj
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� m ri;rj
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� �
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� m ri;rj

3zi�1;zj

� �

þc2
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4ziþ1;zj
� m ri;rj

4zi�1;zj

� �
þ cicj m ri ;rj

5ziþ1;zj

�

� m ri;rj
5zi�1;zj

��
þ 2k

�
¼ 0; ðC2bÞ
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� �
¼
Z

dcj

Z
dcicj exp

�
m riþ1;rjþ1

0zi;zj
þ m riþ1;rjþ1

1zi;zj
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þ m riþ1;rjþ1

2zi ;zj
c2
i þ m riþ1;rjþ1

3zi;zj
cj þ m riþ1;rjþ1

4zi;zj
c2
j

þ m riþ1;rjþ1

5zi;zj
cicj

��
1

�tj

��
m ri;rjþ1
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� 1

2

�
m ri;rj
0zi;zjþ1

þ m ri;rj
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��
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�
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1zi;zj
� 1

2

�
m ri;rj
1zi;zjþ1 þ m ri;rj

1zi;zj�1
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þc2
i

�
m ri ;rjþ1

2zi ;zj
� 1

2

�
m ri ;rj
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��
þ cj

�
�
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� 1

2

�
m ri;rj
3zi;zjþ1 þ m ri ;rj
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��
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j

�
�
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� 1

2

�
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��
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�
�
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� 1

2

�
m ri;rj
5zi;zjþ1 þ m ri;rj

5zi;zj�1

���

þ q

2�sj

�
m ri;rj
0zi;zjþ1 � m ri;rj

0zi;zj�1

��

þci

�
m ri;rj
1zi;zjþ1 � m ri ;rj

1zi ;zj�1

�
þ c2

i

�
m ri;rj
2zi;zjþ1 � m ri;rj

2zi;zj�1

�

þcj

�
m ri;rj
3zi;zjþ1 � m ri ;rj

3zi ;zj�1

�
þ c2

j

�
m ri;rj
4zi;zjþ1 � m ri;rj

4zi;zj�1

�

þcicj

�
m ri;rj
5zi;zjþ1 � m ri;rj

5zi;zj�1

��
þ k
�

¼ 0; ðC2cÞ

F4 ci;cj

� �
¼
Z

dcj

Z
dcic

2
j exp

�
m riþ1;rjþ1

0zi;zj
þ m riþ1;rjþ1

1zi;zj
ci

þ m riþ1;rjþ1

2zi ;zj
c2
i þ m riþ1;rjþ1

3zi;zj
cj þ m riþ1;rjþ1

4zi;zj
c2
j

þ m riþ1;rjþ1

5zi;zj
cicj

��
1

�tj

��
m ri ;rjþ1

0zi ;zj
� 1

2

�
m ri;rj
0zi;zjþ1

þ m ri;rj
0zi;zj�1

��
þ ci

�
m ri;rjþ1

1zi;zj
� 1

2

�
m ri;rj
1zi;zjþ1 þ m ri;rj

1zi;zj�1

��

þc2
i

�
m ri;rjþ1

2zi;zj
� 1

2

�
m ri;rj
2zi;zjþ1 þ m ri;rj

2zi;zj�1

��
þ cj
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�
�
m ri ;rjþ1

3zi;zj
� 1

2

�
m ri ;rj
3zi ;zjþ1 þ m ri;rj

3zi;zj�1

��
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j

�
�
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� 1

2

�
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��
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�
�
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2

�
mri;rj5zi;zjþ1 þ m ri ;rj
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���

þ q

2�sj

��
m ri;rj
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�
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�
m ri;rj
1zi;zjþ1 � m ri;rj
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�

þc2
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�
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�
þ cj

�
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�

þc2
j

�
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�
þ cicj

�
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�
¼ 0; ðC2dÞ
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� �
¼
Z
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Z
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�
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2zi;zj
c2
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3zi;zj
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c2
j

þ m riþ1;rjþ1

5zi ;zj
cicj

��
1

�ti

��
m riþ1;rj
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� 1

2

�
m ri ;rj
0ziþ1;zj

þ m ri;rj
0zi�1;zj

��
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�
m riþ1;rj
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� 1

2

�
m ri;rj
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þ m ri ;rj
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��

þc2
i

�
m riþ1;rj
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2

�
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þcj

�
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2

�
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��
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j
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� 1

2

�
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��
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�
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2

�
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���

þ q

2�si
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�
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�
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�

þc2
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�
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�
þ cj

�
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3ziþ1;zj

� m ri;rj
3zi�1;zj

�

þc2
j

�
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4ziþ1;zj

� m ri;rj
4zi�1;zj

�
þ cicj

�
m ri ;rj
5ziþ1;zj

� m ri ;rj
5zi�1;zj

��
þ k
�

¼ 0: ðC2eÞ

Equations (C1b)–(C1e) are discretized in a similar way.
Finally, in stage C we obtain the components of the
Jacobian

J F;Mð Þ ¼ @F C;Mð Þ=@M triþ1; trjþ1

szi ; szj

������� ðC3Þ

¼

@F1 C;Mð Þ
@m

riþ1;rjþ1

1zi ;zj

@F1 C;Mð Þ
@m

riþ1;rjþ1

2zi ;zj

@F1 C;Mð Þ
@m

riþ1;rjþ1

3zi ;zj

@F1 C;Mð Þ
@m

riþ1;rjþ1

4zi ;zj

@F1 C;Mð Þ
@m

riþ1;rjþ1
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@m
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4zi ;zj
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riþ1;rjþ1

5zi ;zj
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1zi ;zj
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2zi ;zj
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4zi ;zj
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1
CCCCCCCCCCCCCCCCCA

:

As an example, the derivative of F1(ci, cj; si, ti, sj, tj) with
respect to m1(si, ti, sj, tj) follows
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þ m riþ1;rjþ1

2zi;zj
c2
i þ m riþ1;rjþ1

3zi ;zj
cj þ m riþ1;rjþ1

4zi;zj
c2
j

þ m riþ1;rjþ1

5zi ;zj
cicj

�
1

�ti
1þ
�
m riþ1;rj
0zi;zj

� 1

2

�
m ri;rj
0ziþ1;zj

��

þ m ri;rj
0zi�1;zj

��
þ ci m riþ1;rj

1zi;zj
� 1

2
m ri;rj
1ziþ1;zj

þ m ri;rj
1zi�1;zj

����

þc2
i

�
m riþ1;rj
2zi;zj

� 1

2

�
m ri;rj
2ziþ1;zj

þ m ri;rj
2zi�1;zj

��
þ cj

� m riþ1;rj
3zi;zj

� 1

2
m ri ;rj
3ziþ1;zj

þ m ri;rj
3zi�1;zj

� �� �
þ c2

j

� m riþ1;rj
4zi;zj

� 1

2
m ri;rj
4ziþ1;zj

þ m ri;rj
4zi�1;zj

� �� �
þ cicj

� m riþ1;rj
5zi;zj

� 1

2
m ri;rj
5ziþ1;zj

þ m ri;rj
5zi�1;zj

�����

þ q

2 �si

��
m ri;rj
0ziþ1;zj

� m ri;rj
0zi�1;zj

�
þci

�
m ri;rj
1ziþ1;zj

� m ri ;rj
1zi�1;zj

�

þc2
i

�
m ri;rj
2ziþ1;zj

� m ri;rj
2zi�1;zj

�
þ cj

�
m ri ;rj
3ziþ1;zj

� m ri;rj
3zi�1;zj

�

þc2
j

�
m ri ;rj
4ziþ1;zj

� m ri;rj
4zi�1;zj

�
þ cicj

�
�
m ri;rj
5ziþ1;zj

� m ri ;rj
5zi�1;zj

��
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The remaining Jacobian discretized components are
obtained in a similar manner.
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