86 research outputs found

    Older people’s experiences of mobility and mood in an urban environment : A mixed methods approach using electroencephalography (EEG) and interviews

    Get PDF
    There are concerns about mental wellbeing in later life in older people as the global population becomes older and more urbanised. Mobility in the built environment has a role to play in improving quality of life and wellbeing, as it facilitates independence and social interaction. Recent studies using neuroimaging methods in environmental psychology research have shown that different types of urban environments may be associated with distinctive patterns of brain activity, suggesting that we interact differently with varying environments. This paper reports on research that explores older people’s responses to urban places and their mobility in and around the built environment. The project aim was to understand how older people experience different urban environments using a mixed methods approach including electroencephalography (EEG), self-reported measures, and interview results. We found that older participants experience changing levels of “excitement”, “engagement” and “frustration” (as interpreted by proprietary EEG software) whilst walking between a busy built urban environment and an urban green space environment. These changes were further reflected in the qualitative themes that emerged from transcribed interviews undertaken one week post-walk. There has been no research to date that has directly assessed neural responses to an urban environment combined with qualitative interview analysis. A synergy of methods offers a deeper understanding of the changing moods of older people across time whilst walking in city settings

    Stray animals: Section 4 - Liability and tort law

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Stray animals: Section 4 - Liability and tort law

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Targeted Disruption of TgPhIL1 in Toxoplasma gondii Results in Altered Parasite Morphology and Fitness

    Get PDF
    The inner membrane complex (IMC), a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[125I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites

    The impact of walking in different urban environments on brain activity in older people

    Get PDF
    Neurourbanism looks to understand the relationship between urban environments and mental well-being and is well placed to assess the role of these environments on the urbanised and ageing global population. This study builds on research using mobile electroencephalography (EEG) to understand the impact of urban environments (busy, quiet and green urban spaces) on brain activity. Ninety-five older participants aged over 65 years undertook one of six walks in an urban neighbourhood, transitioning between two distinct environmental settings. This study explores changes in alpha (associated with relaxation) and beta (associated with attention) brain activity recorded during walking in differing urban environments. Neural activity significantly varies as participants walk between urban busy and green settings, with reduced levels of low beta activity in the green setting, suggesting attention changes consistent with Attention Restoration Theory. Levels of alpha activity significantly varied between the urban busy and the urban quiet settings, with increases in the urban busy setting. There were no significant differences in EEG activity between the urban green and urban quiet settings, suggesting that the magnitude of environmental contrast between the urban busy context and other urban settings is an important factor in understanding the effects of these spaces on brain activity.ISSN:2374-8834ISSN:2374-884

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins

    Get PDF
    The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore