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ABSTRACT

Neurourbanism looks to understand the relationship between urban environments and mental
well-being and is well placed to assess the role of these environments on the urbanised and
ageing global population. This study builds on research using mobile electroencephalography
(EEG) to understand the impact of urban environments (busy, quiet and green urban spaces) on
brain activity. Ninety-five older participants aged over 65 years undertook one of six walks in an
urban neighbourhood, transitioning between two distinct environmental settings. This study
explores changes in alpha (associated with relaxation) and beta (associated with attention) brain
activity recorded during walking in differing urban environments. Neural activity significantly
varies as participants walk between urban busy and green settings, with reduced levels of low
beta activity in the green setting, suggesting attention changes consistent with Attention
Restoration Theory. Levels of alpha activity significantly varied between the urban busy and
the urban quiet settings, with increases in the urban busy setting. There were no significant
differences in EEG activity between the urban green and urban quiet settings, suggesting that the
magnitude of environmental contrast between the urban busy context and other urban settings
is an important factor in understanding the effects of these spaces on brain activity.
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Introduction

In the context of a need to better understand the role that

urban environments play in human health, there is

a well-established literature demonstrating that prefer-

ences exist for viewing natural scenes over urban scenes

(Velarde et al. 2007), and this effect is evident across

different cultures (Takayama et al. 2014, Conedera et al.

2015). Additionally, walking in some natural environ-

ments has been shown to be beneficial for both psycho-

social well-being (Bratman et al. 2015, Gidlow et al. 2016)

and cognition (Berman et al. 2008, 2012), owing perhaps

to the restorative effect of natural spaces (Kaplan and

Kaplan 1989, Kaplan 1995, 2001) that reduce the demand

placed on attentional capacities by busy environments

(Mulckhuyse and Theeuwes 2010). Alternative theories

suggest that sensory elements of green spaces provide

positive psychophysiological responses to green spaces

leading, in turn, to mental restoration and/or stress

reduction (Peschardt and Stigsdotter 2013, Roe et al.

2013b). What is less well understood is how spending

time in urban environments may affect cognitive load

and attentional capacity.

Therehave recently beenattempts tounderstand the role

of the environment on brain activity using various neuroi-

maging techniques as a means to validate subjective mea-

suresof affect, attentionandactivation. Functionalmagnetic

resonance imaging (fMRI) studies have revealed distinct

networks of neural activation while viewing static natural

and urban images. Natural scenes are associated with

increased activation in the frontal gyrus, precuenus and

anterior cingulate while the urban scenes induce increased

activation in a network including the hippocampus, amyg-

dala and inferior frontal gyrus (Kim et al. 2010a). The

authors suggest that distinct environments induce distinct

networks of neural activation and that these activations are

related to the participants’ memory (hippocampus) and

emotional responses (amygdala) to the given environment.

Further fMRI research has suggested that this relationship

could be mediated by life experience and place preferences

(Kim et al. 2010b)with increased activation in hippocampal

and parahippocampal regions, associated with memory

function (Vargha-Khadem et al. 1997, Tulving and

Markowitsch 1998), as well as the amygdala, associated

with emotional processing (Rasia-Filho et al. 2000, Phelps

and LeDoux 2005), during viewing of urban scenes.
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The restorative effect of environments has been

directly assessed by fMRI (Martínez-Soto et al. 2013),

showing that rural scenes induced increases in neural

activation associated with bottom-up (i.e. exogenous/sti-

mulus-driven) attentional processing while urban scenes

induced increases associated with top-down (i.e. endo-

genous) attentional processing (Buschman and Miller

2007). There is a psychological benefit of bottom-up

attentional processing as it relates to involuntary atten-

tion (Itti 2006), as defined in Attention Restoration

Theory (Kaplan andKaplan 1989, Kaplan 1995) as effort-

less attention which leads to reduction in fatigue, while

greater mental effort and subsequent fatigue is associated

with top-down processing, defined as directed attention

(Berto et al. 2010, Mulckhuyse and Theeuwes 2010).

Recent research has suggested that a 90-min walk

in nature (grassland and trees) leads to decreases in

levels of rumination (associated with risk of depres-

sion), and decreases in activity in the subgenual pre-

frontal cortex compared with a 90-minwalk in a busy

urban environment where these decreases were not

seen (Bratman et al. 2015). However, these fMRI

studies are limited to providing information obtained

in a laboratory setting, either using 2D photographic

imagery, or post in-situ real-world experience of

environmental stimuli.

Electroencephalography (EEG) has been used to

assess environmental effects on neural activity.

Research has shown that passively viewing static rural

images can induce increases in alpha (8–13 Hz) activity

(Ulrich 1981, Chang et al. 2007) associated with

decreased cortical activation likened to relaxation

(Kubitz and Pothakos 1997) and resting cortical states

(Sauseng et al. 2005). Decreases in alpha activity, with

subsequent increases in higher frequencies such as beta

(13–30 Hz), are indicative of higher stress and increased

alertness/vigilance (Bonnet and Arand 2001). Increased

beta activity has been correlated with visual attention

and modulation (Wrobel 2000, Buschman and Miller

2007) and shown to increase in situations requiring

high levels of attention, such as driving in an urban

environment (Dehzangi and Williams 2015). There is

evidence to suggest that viewing vegetation in the form

of grass, plants and shrubs (landscape plants) can reduce

levels of beta activity associated with traffic noise (Yang

et al. 2011), suggesting that even minor green space

interventions can have an impact on brain activity.

Exercise, in general, has also been associated with

neural activity change, with increased levels of alpha

activity post-exercise (Schneider et al. 2009) as measured

from frontal EEG sites. Physical effort also leads to

increased levels of lower beta activity (in this example,

13–22 Hz), associated with vigilance, and reduced levels

of higher beta (23–30 Hz) activity, associated with cog-

nitive processing (Smit et al. 2005). In-situ exposure to

natural and urban contexts has been assessed using

mobile EEG (Chen et al. 2016) with results suggesting

that exposure to nature leads to increased neural con-

nectivity, associated with more efficient processing, sup-

porting theories on the restorative effects of natural

spaces on psychological well-being. Furthermore, this

objective measure of activity correlated with participants’

subjective experience of nature, shown by increased

levels of ‘coherent’ landscape extent experiencemeasured

by the Perceived Restorative Scale (PRS).

Mobile EEG is an emerging tool that may lead to

further understanding of the effect of real-world envir-

onments on neural activity (Mavros et al. 2016). There

have been numerous studies that have used the Emotiv

(www.emotiv.com) headset in health and well-being

research (Milosevic et al. 2013, Choo and May 2014,

Aspinall et al. 2015, Menshawy et al. 2015, Neale et al.

2017) and have validated its appropriateness in both

laboratory and outdoor settings (Debener et al. 2012,

Badcock et al. 2013), although some research casts

doubt over its appropriateness for clinical measurements

or critical medical applications (Duvinage et al. 2013).

Emotiv offer the proprietary Affectiv suite software

which defines distinct brain activity patterns and allo-

cates a label to each (‘frustration’, ‘excitement’, ‘engage-

ment’, ‘meditation’ and ‘long term excitement’). At the

time of writing, there are no published studies that

attempt to directly correlate the Affectiv suite terms

with specific EEG frequency bands. Laboratory data

using the Emotiv headset showed green space scenes

were associated with increased levels of ‘meditation’

and lower levels of ‘excitement’, and these physiological

findings were matched by participants’ preference for

green space over grey space using subjective scales

(Roe et al. 2013a). Furthermore, the presence of green

landscape scenes could be predicted by increases in levels

of ‘meditation’ and lower levels of arousal. However,

laboratory data may not reflect an individual’s actual

experience in a given real-world given environment. To

address this issue, in situ assessments of brain activity in

young participants physically walking through different

urban (quiet urban street, urban green space and busy

commercial urban street) environments sequentially,

wearing a mobile EEG headset, have been undertaken

(Aspinall et al. 2015). The results showed decreased levels

of ‘frustration’ (associated with stress and negative

valence), ‘engagement’ (associated with immersion and

interest) and ‘excitement’ (associated with increased

arousal) moving from a quiet university building district

into an urban green space, with increased levels of

‘engagement’ moving from the green space into a busy,

urban space.

Such methodology, using EEG in real-world environ-

ments as well as in laboratory settings, has been used

increasingly in recent years, reflecting interest in the

emerging discipline of ‘neurourbanism’ (Adli et al.

2017). Research to date has focused almost exclusively

on young people, with the vast majority of experiments

undertaken with university students and/or people aged
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under 30 years (Chang et al. 2008, Chen et al. 2016).

However, patterns of neural activity are age-related and

this may be important in understanding environmental

interactions for older populations (Neale et al. 2017). For

example, while increased beta activity is associated

with visual attention and modulation (Wrobel 2000,

Buschman and Miller 2007) it is also prone to age-

related change (Vysata et al. 2014), correlated with def-

icits in either alertness (activating attentional processes)

or vigilance (sustaining attentional processes) in older

people (Gola et al. 2012). It seems likely that these atten-

tional deficits may be exacerbated by distracting envir-

onments, such as busy urban environments, and this

may be a barrier to people remaining active in the com-

munity in older age, as well as increasing vulnerability to

falls (a leading cause of hospitalisation in people aged 65

and over (Curl et al. 2016)). In the context of an increas-

ingly urbanised and ageing population (United Nations,

2018; Rutherford, 2012), where by 2050 it is estimated

that 34% of the European population will be over 60

years old (Rutherford, 2012) it is important to consider

how urban environments impact on older people. It is

this dearth of studies people aged 65 and over that the

present study addresses. While both laboratory and ‘real

world’ interpretations of EEG signals are currently pub-

lished, there are no published studies, to the authors’

knowledge, that directly assess the raw EEG signal of

older participants when walking between different types

of urban environments. This study developed its hypoth-

eses based on limited existing findings from laboratory-

based studies or from use of Affectiv Suite to interpret

EEG in the field, as well as drawing on theories on the

restorative effects of natural environments versus busy,

building-dominated urban environments.

Aims

This study aimed to understand the impact of walking

through different urban environments (urban busy,

urban green and urban quiet spaces) on neural activity

using mobile EEG with a large sample of older partici-

pants. Much of the laboratory research to date has

investigated the high contrast between natural and

urban scenes, with increases of EEG alpha activity

shown when viewing natural scenes compared with

urban scenes. Previous research has shown increases in

beta (including the lower and higher ends of the fre-

quency) activity correlated with increased attentional

demands and driving in urban spaces. Studies have

previously shown changes in emotional parameters

(based on the Affectiv suite) derived from EEG signals

when transitioning between urban settings, including

a quiet urban setting, but this study is novel in that it

assesses raw EEG signals during a walking study.

Our research question was: what impact does tran-

sitioning between different urban environments have

on brain activity as measured by alpha and beta waves?

We further framed hypotheses to test answers to this

general research question using the varying walking

routes that participants undertook, as follows.

(a) Urban Busy versus Urban Green. We expected

to see increases in alpha activity when walking

in urban green space, associated with increased

relaxation, compared with an urban busy

space., as well as increases in beta activity

(associated with increased physical and mental

effort) in the urban busy setting when com-

pared with the urban green setting.

(b) Urban Busy versus Urban Quiet and Urban

Green versus Urban Quiet. We anticipated we

would find that walking in a quiet urban setting

would show increased levels of beta (associated

with increased attentional capacity) relative to

walking in green space, and increased levels of

alpha relative (associated with increased relaxa-

tion) to the busy urban setting.

Methods

Participants

Participants were healthy adults aged over 65 years

(N = 95, M age = 76.55 years, SD = 8.15, range = 65–92

years) and were recruited by purposive sampling meth-

ods to ensure they met the required inclusion criteria.

Participants were recruited using various resources, such

as online and print adverts, social media and research

partner organisations’mailing lists. Exclusion criteria for

study participation included visual impairments, chronic

mental illness and a history of epileptic or psychiatric

disorders. All participants were required to be able to

walk, unassisted by another person, for at least 15 min.

Ethical approval for the study was provided by the

University of Edinburgh, Edinburgh College of Art

Ethics Committee. To account for brain hemispheric

differences (Sperry 1968), all participants in this study

were right-handed.

All participants scored above the threshold for inclu-

sion based on Mini Mental State Exam (MMSE) scores.

As described by Folstein et al. (1975), scores above 24

indicate no cognitive impairment. The lowest score

obtained in these results was 27, indicating that all parti-

cipants had no indication of cognitive impairment as

measured by the MMSE.

Experimental design and procedures

All participants were screened via a telephone conver-

sation with the research team to ensure they fulfilled the

inclusion criteria before being invited to undertake

a practice session. This session served as an opportunity

to demonstrate the EEG headset (described below) and

the walking route they would take (described below)
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during the experimental session. This was achieved by

showing participants a 15-min video of the route.

Ensuring participants were aware of their assigned

route was important as it meant participants did not

have to refer to maps or consult the researchers for

wayfinding and generally increased participants’ ease

while walking, wearing the headset. Participants were

shown a map pre-walk to remind them of their routes.

The experimental session was undertaken on a -

subsequent day when participants were equipped with

a backpack (Dell Urban 2.0 Backpack, weighing 340.2 g)

to store only the data acquisition computer (Dell Latitude

E7240, weighing 1.31 kg, plus the Emotiv wireless USB

dongle) as well as having the EEG headset calibrated

prior to commencing the walk. Participants were

instructed to walk on their assigned route at their own

pace, understanding that a member of the research team

was following approximately 10 m behind for safety

purposes. Figure 1 shows an example of a participant

wearing the headset for illustrative purposes.

The researchers logged events throughout the walk

(including start and end times) using Fieldworker

(Mavros and Skrompelou 2015). This data provided

back up information to correctly segment the EEG data

(indicating start and end times of each walking segment),

as well as an opportunity to record unusual events (such

as sirens or barking dogs). However, there were not

enough data points for these events to allow for any

meaningful analyses. On average, participants would

complete the walks within 10–15 min. All experimental

sessions were conducted during weekdays and in the

morning in June, July and September, to ensure time

of day and seasonal effects were kept to a minimum.

Routes

Participants walked through one of six walk scenar-

ios, as indicated on the map in Figure 2. The study

site was based in Leith, an historic urban area in the

City of Edinburgh, Scotland. It was selected due to

the proximity of urban green space to busy, urban

space, with a reasonably flat gradient on all study

routes to ensure participants could undertake any

route without excessive exertion. This ensured EEG

responses were due to environmental change and not

gradient variations (Bradford et al. 2015). We

ensured that the routes were of close to equal length,

ensuring that participants completed each section of

their total route at approximately the same time.

Figure 2 indicates an interchange zone in grey

between the urban green (UG) space and the urban

busy (UB) and quiet (UQ) spaces, where participants

had to cross a busy road junction. The busy road

crossing was not modelled in the analysis due to the

unpredictable nature of the conditions around the

pedestrian crossing.

These routes were paired to generate six walk

scenarios;

(1) Urban busy (UB) to urban green (UG)

(2) Urban busy (UB) to urban quiet (UQ)

(3) Urban green (UG) to urban busy (UB)

(4) Urban green (UG) to urban quiet (UQ)

(5) Urban quiet (UQ) to urban busy (UB)

(6) Urban quiet (UQ) to urban green (UG)

Figure 3(a–c) shows images of each of these environ-

ments. Using a between-subjects design, participants

were randomly assigned to one of the six route scenarios

and were required to walk sequentially between the two

assigned environments. The urban green space is an area

with a predominance of vegetated and non-built surfaces

(including grass and trees). The urban busy space is

characterised by mixed-use buildings, paved areas and

a commercial street frontage that attracts a high footfall

and vehicular traffic. The urban quiet space is largely

residential with a predominance of residential buildings,

with some front gardens and paved areas, but not attract-

ing a high footfall or volume of vehicular traffic.

EEG data acquisition

Brain electrical activity was recorded non-invasively

from the scalp using the commercially available

Emotiv EPOC+ EEG headset with 14 channels

(AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7,

P8, O1 and O2), using Emotiv’s Xavier Testbench

program. P3 acts as the Common Mode Sense

(CMS) active electrode reference with P4 acting as

the Driven Right Leg (DRL) passive electrode. All

electrodes correspond to positions on the interna-

tional 10–20 position system. Electrode impedances

were checked for contact quality and signals are

internally sampled at 1024 Hz before being filtered

and down sampled to 128 Hz per channel (i.e. 128

samples per second) and sent via Bluetooth to the

data acquisition computer. Optimal conductance was

obtained by soaking the electrodes in saline solutionFigure 1. A demonstration of the headset being worn.
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before adding glycerine solution in order to prevent

the sensors from drying out.

Pre-processing of the raw EEG data was undertaken in

EEGLAB, a MATLAB toolbox. Individual participant data

were imported, and the 14 channels were defined. Signals

from the 14 channels were high-passfilteredwith a 0.16Hz

cut-off and low-pass filtered with a 42 Hz cut-off before

being re-referenced to the average reference in EEGLAB.

Poor quality data (such as due to extreme head motion)

were rejected by visual inspection before segmenting data

sets from the continuous data file; these sections were

dictated by the start and end times of the walking sessions

(i.e. start/end times of an urban busywalk for example). An

independent component analysis (ICA) was then per-

formed on the data to filter out any potential remaining

extreme signal artefacts from the data.

A fast Fourier transform (FFT) was then applied to

the data, normalised by the length of recording, to

determine which frequency components make up the

raw signal. Of interest to this study is the alpha and

Figure 2. Map of the walking routes undertaken by participants (walking in one of six possible scenarios). UQ – Urban quiet;
UB – Urban busy; UG – Urban green.

Figure 3. Street views of the three walking environments; (a) Urban green (b) Urban busy and (c) Urban quiet (Photo credit:
OPENspace Research Centre).
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beta band. Rather than simply calculating mean

values for each walking segment, a single root mean

square (RMS) value, as used previously in EEG

studies to detect magnitude change in signal

(Bhuvaneswari and Kumar 2015), was calculated

using a MATLAB script for each walking segment

for alpha (9–13 Hz), low beta (13–19 Hz) and high

beta (21–27 Hz) activity. Descriptions of these

frequencies are described in Table 1.

Data analysis

In order to analyse the data, the pre-calculated, single

RMS value for each individual per walking segment

was generated (e.g. a RMS value for the entire urban

green space (UG) walking segment and a second

value for the entire urban busy (UB) walk in a UG

to UB walk) for each of the three raw EEG signals of

interest; alpha, low beta and high beta. These RMS

values were standardised by subtracting the group

RMS from the raw RMS for each individual and

dividing this by the standard deviation of the group

RMS. This data set was subsequently analysed using

a form of high dimensional correlated component

regression (CCR) which has a wide range of applica-

tions, including being able to deal with smaller sam-

ples where p (number of predictors) is greater than

n (number of cases), if required, as well as repeated

measures, identification of suppressor variables and

multicollinearity (Magidson 2010, 2013), making it

preferable to standard regression analyses for this

data set (Garver and Williams 2018, Rosero-Vlasova

et al. 2019). Furthermore, this method has been used

consistently in a variety of health-related environ-

mental studies with successful results (Aspinall et al.

2015, Curl et al. 2015, Ward Thompson et al. 2016,

Neale et al. 2017). We assessed difference scores

between environmental contexts for each of the walk-

ing routes (dependent variable; e.g. UB to UG and

UG to UB), generated by a calculation of x = (Walk

A – Walk B) at the participant level for each of the

three EEG signals of interest (independent variables).

Outliers were identified and amended using

a criterion of z = 2.5 (i.e. high difference outliers

which might be unduly influential were brought

back to the highest value within 2.5 standard devia-

tions (Osborne and Overbay 2004)). These final

differences scores were used in the regression analy-

sis. The CCR method generates a model (training)

which is subsequently tested through multiple runs

(n = 500).

Results

Comparison of walking between urban busy (UB)

and urban green (UG) environments

Table 2 indicates that there were differences between UB

and UG environments with respect to levels of alpha and

low beta. There was no effect of the changing environ-

ment on levels of high beta in either route.

The ‘Model Fit’ section of Table 2 shows the

value of R2 from cross-validation along with its

standard error (SE) showing a small to medium

effect size. The standardised coefficients are shown

(and interpreted as in any regression output), indi-

cating the out of sample performance and the rank

order of predictors in the model. The positive and

negative signs of the standardised coefficients in

Table 2 associated with alpha and low beta levels

are given context in Figure 4. The figure shows the

differences in alpha and low beta in going from the

first to the second part of each walking scenario.

A positive value above zero indicates levels for that

parameter are greater in the first part of the walk,

and a negative value below zero indicates levels for

that parameter are greater in the second part of the

walk. In Figure 4, low beta is shown to be higher in

UB than in UG, and this result is reversed in the

UG to UB direction, meaning that low beta is still

higher in the UB condition than UG. However,

Figure 4 does not show any discrimination between

the walks for alpha; to explore this further,

a Spearman correlation was employed between the

binary dependent (UB/UG) revealing the correlation

to be non-significant (r = .03, p = .83). However,

the Spearman correlation between the binary depen-

dent variable (UB/UG) and low beta when control-

ling for alpha shows a significant correlation (r = –

.301, p = .047) which is higher than that for the

dependent and low beta alone (r = – .076, p = .67).

This suggests that alpha, while not a predictor, is

acting as a suppressor variable (Conger 1974,

MacKinnon et al. 2000). The inclusion of alpha in

Table 1. Descriptions of the EEG signals of interest.

Frequency Working description

Alpha (9–13 Hz) Increases associated with relaxed states
and shown to be affected by natural
spaces (Chang et al. 2007; Ulrich 1981)

Low Beta (13–19 Hz)
High Beta (21–27 Hz)

Associated with alert states, increases
associated with increases in directed
attention (Bonnet and Arand 2001;
Dehzangi and Williams 2015)

Table 2. Logistic CCR outputs for the UB and UG routes.

Model Fit Training Cross validation
Standard
error

R2 .084 .011 .015
AUC .618 .482 .054
Accuracy .575 .492 .053
Predictors in

rank order

Standardised
Coefficient

Out of Sample frequency
(n = 500 runs)

Alpha 1.3318 493
Low Beta −2.3218 422

AUC = Area under the curve.
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the model strengthens the effect of low beta in

relation to the route dependent variable by suppres-

sing some of the irrelevant variance within low beta.

Comparison of walking between urban busy (UB)

and urban quiet (UQ) environments

Table 3 indicates that there is only one predictor

that discriminates between walking between UB

and UQ environments with respect to levels of

alpha activity. There was no effect of the changing

environment on levels of either low or high beta in

either route.

The ‘Model Fit’ section of Table 3 shows the value of R2

from cross-validation along with its standard error (SE)

showing a small to medium effect size. The positive and

negative signs of the standardised coefficients in Table 3

associated with alpha levels are given context in Figure 5.

In the first transition from UQ to UB, alpha activity is

negative, meaning that alpha activity is lower in UQ

compared to the UB section. However, for the walk in

the reverse direction (UB to UQ), the results are reversed.

Alpha is positive,meaning that it is higher inUB thanUQ.

Comparison of walking between urban quiet (UQ)

and urban green (UG) environments

Table 4 indicates that there were no predictors that

discriminate between UG and UQ environments

across any of the predictors in the model.

The ‘Model Fit’ section of Table 4 shows the value of

R2 from cross-validation along with its standard error

(SE) showing amedium effect size. Despite thismedium

effect size, high area under curve (AUC) and model

accuracy, there were no predictors that showed

a statistically significant effect when walking between

these two conditions.

Discussion

For the first time, we have shown, via raw EEG data

analysis, different responses in alpha and low beta

brain activity to walking in varying urban environ-

ments in a comparatively large sample of older

people, aged 65 and over. In general, we found mean-

ingful changes in brain activity only when urban busy

(UB) was contrasted with other environments; the

transition between urban quiet (UG) and urban

green spaces showed no significant differences,

whereas the routes that had an urban busy segment

showed meaningful differences in brain activity

between settings. This suggests that there are proper-

ties distinctive to the urban busy setting (a building-

dominated and heavily trafficked urban environment)

Table 4. Logistic CCR outputs for the UG and UQ routes.

Model Fit Training Cross validation Standard error

R2 .355 .289 .047
AUC .941 .937 .028
Accuracy .909 .894 .043
Predictors

None

AUC = Area under the curve.

Figure 4. Alpha and low beta difference scores for each
walking context.

Note: A positive value above zero indicates levels for that parameter are
greater in the first part of the walk and a negative value below zero indicates
levels for that parameter are greater in the second part of the walk.

Figure 5. Alpha difference scores for each walking condition
showing that alpha is greater in the UB setting than the UQ
setting.

Note: A positive value above zero indicates levels for that parameter are
greater in the first part of the walk and a negative value below zero
indicates levels for that parameter are greater in the second part of the
walk.

Table 3. Logistic CCR outputs for the UB and UQ routes.

Model
Fit Training Cross validation

Standard
error

R2 .29 .156 .033
AUC .977 .864 .059
Accuracy .869 .807 .058
Predictors Standardised

Coefficient
Out of Sample

frequency
(n = 500 runs)

Alpha 9.297 370

AUC = Area under the curve.
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which perhaps play an important role in the models

presented here.

Urban busy versus urban green

Results indicate that low beta (13–19 Hz) activity

increased while walking in the urban busy setting in

comparison with the other two settings in our study, as

expected in hypothesis (a). Previous studies have shown

that beta activity increases as a function of vigilance and

visual attention (Wrobel 2000, Buschman and Miller

2007, Dehzangi and Williams 2015). The increased

demands on attention and vigilance required to navi-

gate a busy urban setting may explain the increase in

low beta when walking in busy urban spaces compared

with walking in urban green spaces. Recent research has

shown a positive correlation between beta activity and

associated arousal and attention when viewing streets-

capes of varying complexity in a laboratory setting

(Kacha et al. 2015). Given the higher levels of both

pedestrian and vehicle traffic, a number of junctions

and building size and visibility in the urban busy setting

here, when compared with the green space, this

increased complexity of the environment could be, in

part, responsible for the increases in beta shown here.

Interestingly, the effect on beta shown in the laboratory

setting (Kacha et al. 2015) was across the entire beta

band (13–30Hz). The results we present here only show

an effect for low beta and indicate no effect of environ-

mental transitions on high beta (21–30Hz) activity. The

pattern of low beta activity found in this study follows

the same pattern as ‘excitement’ levels that have pre-

viously been shown (Neale et al. 2017) when measured

using the Affectiv suite software developed by Emotiv.

Of the three settings explored, the contrast in our

outcome measures is greatest between the urban busy

and the urban green sections, so the environmental

contrast between these two settings is likely to

account for the largest effect found in our analysis.

Previous research, as discussed earlier, has shown

that greenery such as small, ornamental trees and

shrubs can reduce levels of beta activity (Yang et al.

2011). This increased exposure to vegetation may

explain the reduced level of low beta seen in our

study’s green space setting compared with the

response to the absence of any planting in the

urban busy setting.

The role of alpha (9–13 Hz), while not a predictor

in the regression models shown here, is to have

a suppressor effect, increasing the effect strength of low

beta on the route-dependent variable. This is counter to

our earlier prediction, where we expected alpha activity

to increase in the green space when compared to the

urban busy setting, as previously shown in laboratory

studies (Ulrich 1981, Chang et al. 2007).

Urban busy versus urban quiet

In the urban busy versus urban green model, we did

not see the expected increase in alpha activity in

green space. However, when compared with the

urban quiet setting, there was an increase in alpha

activity in the urban busy setting, contrary to our

framing of hypothesis (b), and restorative environ-

ment theory. We had hypothesised that the calmer

environments of green and quiet urban settings

would induce alpha activity associated with relaxed

states, compared with the higher vigilance required

for navigation of a busy urban setting. However, our

findings suggest that, unlike in the urban busy versus

urban green setting, alpha activity is not acting as

a suppressor variable in the urban busy versus

urban quiet setting.

Recent research suggests that, when viewing

streetscapes, familiar environments are associated

with increases in alpha activity (Kacha et al. 2015),

an effect also shown in experts viewing familiar

motor actions (Nota et al. 2017), and which may be

physiologically modulated by levels of acetylcholine

(Eckart et al. 2016). Potentially, the urban busy set-

ting used here – a busy street with familiar shops

(national supermarket) and landmarks (bus stops,

street furniture, bins) – is one that is sufficiently

familiar to participants, resulting in increases in

alpha activity. The urban quiet setting, however, is

likely to be less familiar to participants, being a much

less-visited street which does not necessarily conform

to expected urban street or urban park characteristics

in the same way that the busy and green settings do

here. If the urban quiet setting is less familiar, it may

induce a level of ‘fascination’ that is a core compo-

nent of the restorative experience highlighted in

attention restoration theory (Kaplan and Kaplan

1989, Kaplan 1995). The familiarity of the urban

busy setting compared with the relatively unknown

urban quiet street may be responsible for the change

in alpha shown in this model. It would be of interest

to explore this further by assessing responses to

familiar urban quiet settings (perhaps near the

home of participants if appropriate) to establish if

the increase in alpha is associated with familiarity

versus ‘fascination’ or is associated with the particular

features of the environmental contexts used here.

Urban green versus urban quiet

There were no differences shown in the model

between alpha or beta activity in the green compared

with quiet urban spaces. This could perhaps be

because both settings are largely pleasant, quiet

spaces, with some small but attractive front gardens,

therefore the variation in experience between the two
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settings is not sufficient to generate a significant dif-

ference in effects as measured by alpha or beta.

General discussion

One of the underlying strengths of the study design

utilised here is the external validity of undertaking

environmental research ‘in the wild’, but it also brings

challenges. Castermans et al. (2014) suggest that the

EEG signal up to 15 Hz may become distorted when

recorded at the same time as walking, albeit on

a treadmill. This poses a methodological concern

given that the alpha (8–13 Hz) and a section of the

low beta signal (13–19 Hz) would be affected by this.

However, not only were the data thoroughly pre-

processed in order to clean any distorted data, but

the changes we see between conditions appear to be

context specific, suggesting that the findings pre-

sented here are not the result of excessive signal

noise. Future researchers may wish to compare the

conditions of this study, perhaps using virtual reality

in a laboratory setting with a treadmill, to assess the

neural effects of viewing the urban environment in

order to distinguish laboratory from ‘real world’

effects. This could be important as our findings

appear to contradict certain previous, laboratory-

based EEG work, suggesting that it may be possible

to identify distinctive neural signatures associated

with viewing, as opposed to being immersed in, dif-

ferent urban environments. Research has begun into

benchmarking EEG systems against sitting and walk-

ing conditions to assess data rejection rate, pre-

stimulus noise per condition, signal-to-noise ratio

and EEG amplitude (Oliveira et al. 2016), in order

to assess differences between the two different data

collection conditions. It would be valuable to repli-

cate this method using the Emotiv Epoc+ system used

in the present study.

One of the central principles of attention restora-

tion theory is that, for an environment to be

restorative, it must offer some level of effortless or

‘soft’ fascination (Herzog et al. 1997, Ouellette et al.

2005). The sites selected for this study were chosen

on the basis that they were green, quiet and busy

urban spaces close enough to each other to provide

easily transitions for older people within a short

walk period (Figure 1). We deliberately chose

a green space without water (known to influence

landscape preferences), so that the sections of the

route were as close to their descriptions of urban

green, urban busy and urban quiet as possible.

Given the methodological constraints placed on

this site selection, it is possible that the green

space chosen here was not sufficiently fascinating

to induce a restorative experience or show a marked

effect in EEG. However, the site is typical of many

public parks that reflect everyday urban contexts in

Great Britain, so the inferences from this study may

be transferable to other local, accessible urban

green spaces. Further research is recommended to

demonstrate whether these results are reproducible

in other urban contexts, both in Britain and inter-

nationally, with quiet, busy and green urban spaces.

While the architectural style of buildings in

Edinburgh is different to other parts of the world,

it would be interesting to apply this method to

other settings that retain the same broad urban

forms (busy, quiet and green elements). Such work

may help to elucidate the role that urban, architec-

tural or landscape design plays in such results, as

well as the influence of other people in the envir-

onment. For example, does the level of pedestrian

flow through a space, or the percentage of route

that is tree-lined, act as a key element in interpret-

ing EEG responses?

Our study area was chosen partly due to it having

comparatively level topography, in order to minimise

any physical challenge to our participants associated

with a route having steep gradients. There is recent

research that suggests a unified canonical-correlation

analysis for EEG data recorded while walking may be

useful to remove any gradient artefacts that may

come about from walking up hills (for example)

that this study protocol avoided (Li et al. 2017).

Therefore, future studies may be able to conduct

mobile EEG experiments in more topographically

varied and contrasting settings to assess different

levels of fascination within or between environments

that are not relatively flat.

A further consideration is that the ease of naviga-

tion of the study route may have contributed to the

absence of change in high beta activity, in that there

were perhaps no cognitively challenging aspects to

the walk, which thus required lower levels of vigilance

and attention (Wrobel 2000, Buschman and Miller

2007). The age of the cohort may also have contrib-

uted to the lack of response in high beta activity; it

has been suggested that beta activity may be suscep-

tible to change in older age (Gola et al. 2012), in

particular at higher frequencies (Christov and

Dushanova 2016). The notion of varying complexity

in order to achieve cognitive-friendly environments

(Cassarino and Setti 2016) that help people navigate

in older age, despite some level of cognitive decline,

suggests that a lack of environmental complexity may

result in sub-optimal cognitive stimulation; this may

explain the absence of high beta activity in any of the

walking routes presented in the data here.

There are some limitations in the study, due to the

nature of the experimental protocol. In particular,

given the ‘real world’ settings used, the protocol was

unable to control for real-world events resulting in

potentially varying sensory experiences – such as

sights and sounds – between participants that can
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be avoided with controlled laboratory studies. For

such walking studies, future research may wish to

isolate unusual events, such as increased traffic

noise, and either remove the associated EEG data

for this time period from the dataset, or analyse

them separately. Research suggests brightness (Park

et al. 2013) and ambient temperature (Lv et al. 2017)

may affect EEG signals, so future research may wish

to record these in real-world settings and covary for

them in any subsequent mobile EEG analysis.

There are some concerns in the research commu-

nity about the quality of the data that Emotiv head-

sets acquire, with studies suggesting that the quality

of the data is not sufficient for clinical use (Duvinage

et al. 2013). While the present study does not attempt

to make clinical diagnoses, it would be advantageous

to the research community working in environmental

psychology if direct comparisons could be underta-

ken in future using this experimental protocol, com-

paring both medical grade and Emotiv data to assess

neural activity, as has been previously done with

other experimental protocols (Debener et al. 2012,

Badcock et al. 2013).

In an increasingly urban and ageing population, it is

important to have cities that encourage and support

people in maintaining pleasurable walking into very old

age. This ‘real-world’ research offers the opportunity to

better understand how different urban contexts are

experienced and responded to in ways that may be

supportive of well-being or potentially hazardous.

Issues relating to older people, in particular, include

opportunities for relaxation away from distractions that

demand attention, such as busy urban environments,

where trips and falls may be more likely due to these

demands. The study also suggests that there may be

opportunities for using mobile EEG to better understand

the ways in which some environments engage attention

without being over-demanding, while others can quickly

become exhausting.

We have shown, for the first time, changes in low

beta activity related to differences between urban

busy and urban green spaces. As previously dis-

cussed, beta activity is prone to age-related change

(Gola et al. 2012, Vysata et al. 2014), so future studies

should not only aim to assess if this effect is repro-

ducible but also if there are differences between

young and old populations in beta activity. Future

research might assess the role of urban spaces on beta

activity in older participants with particular, clinically

recognised, states, such as those with dementia.

Undertaking this research could perhaps lead to iden-

tification of neural signatures associated with the

experience of different kinds of urban spaces by age

and cognitive state, which in turn would be useful for

designers of public spaces and residential environ-

ments, as well as for policy-makers and health

practitioners to understand any beneficial or detri-

mental effects of urban spaces on an ageing

population.

Conclusion

These results add to the growing evidence regarding

neural change associated with viewing or experien-

cing changing urban environments. This is the first

time, to the authors’ knowledge, that a mobile EEG

project has been undertaken on a group of this size,

and on older adults, to understand the effects of

walking in the real urban environment using raw

EEG data. We show clear changes in low beta activity

between urban busy and urban green settings, per-

haps linked with cognitive arousal and attention.

Furthermore, we show differences in levels of alpha

activity between urban busy and urban quiet settings,

perhaps due to familiarity associated with the urban

busy setting. While this investigation sheds some

light on such effects, based on a simple design com-

paring different urban settings, further investigation

is required to understand the exact neurological pro-

cesses that underpin these changes.
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