325 research outputs found

    Silk Protein Solution : A Natural Example of Sticky Reptation

    Get PDF
    Silk is one of the most intriguing examples of biomolecular self-assembly, yet little is understood of molecular mechanisms behind the flow behavior generating these complex high-performance fibers. This work applies the polymer physics of entangled solution rheology to present a first microphysical understanding of silk in the linear viscoelastic regime. We show that silk solutions can be approximated as reptating polymers with "sticky" calcium bridges whose strength can be controlled through the potassium concentration. This approach provides a new window into critical microstructural parameters, in particular identifying the mechanism by which potassium and calcium ions are recruited as a powerful viscosity control in silk. Our model constitutes a viable starting point to understand not only the "flow-induced self-assembly" of silk fibers but also a broader range of phenomena in the emergent field of material-focused synthetic biology

    Revealing the Ion Chemistry Occurring in High Kinetic Energy-Ion Mobility Spectrometry: A Proof of Principle Study

    Get PDF
    Here, we present proof of principle studies to demonstrate how the product ions associated with the ion mobility peaks obtained from a High Kinetic Energy-Ion Mobility Spectrometer (HiKE-IMS) measurement of a volatile can be identified using a Proton Transfer Reaction/Selective Reagent Ion-Time-of-Flight-Mass Spectrometer (PTR/SRI-ToF-MS) when operating both instruments at the same reduced electric field value and similar humidities. This identification of product ions improves our understanding of the ion chemistry occurring in the ion source region of a HiKE-IMS. The combination of the two analytical techniques is needed, because in the HiKE-IMS three reagent ions (NO+, H3O+ and O2+•) are present at the same time in high concentrations in the reaction region of the instrument for reduced electric fields of 100 Td and above. This means that even with a mass spectrometer coupled to the HiKE-IMS, the assignment of the product ions to a given reagent ion to a high level of confidence can be challenging. In this paper, we demonstrate an alternative approach using PTR/SRI-ToF-MS that allows separate investigations of the reactions of the reagent ions NO+, H3O+ and O2+•. In this study, we apply this approach to four nitrile containing organic compounds, namely acetonitrile, 2-furonitrile, benzonitrile and acrylonitrile. Both the HiKE-IMS and the PTR/SRI-ToF-MS instruments were operated at a commonly used reduced electric field strength of 120 Td and with gas flows at the same humidities

    A fingerprint based metric for measuring similarities of crystalline structures

    Get PDF
    Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell we introduce crystal fingerprints that can be calculated easily and allow to define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method is an useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms and high-throughput screenings

    Interferometry of ϵ\epsilon Aurigae: Characterization of the asymmetric eclipsing disk

    Full text link
    We report on a total of 106 nights of optical interferometric observations of the ϵ\epsilon Aurigae system taken during the last 14 years by four beam combiners at three different interferometric facilities. This long sequence of data provides an ideal assessment of the system prior to, during, and after the recent 2009-2011 eclipse. We have reconstructed model-independent images from the 10 in-eclipse epochs which show that a disk-like object is indeed responsible for the eclipse. Using new 3D, time-dependent modeling software, we derive the properties of the F-star (diameter, limb darkening), determine previously unknown orbital elements (Ω\Omega, ii), and access the global structures of the optically thick portion of the eclipsing disk using both geometric models and approximations of astrophysically relevant density distributions. These models may be useful in future hydrodynamical modeling of the system. Lastly, we address several outstanding research questions including mid-eclipse brightening, possible shrinking of the F-type primary, and any warps or sub-features within the disk.Comment: 105 pages, 57 figures. This is an author-created, un-copyedited version of an article accepted for publication in Astrophysical Journal Supplement Series. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    High Kinetic Energy Ion Mobility Spectrometry- Mass Spectrometry investigations of four inhalation anaesthetics : isoflurane, enflurane, sevoflurane and desflurane

    Get PDF
    Here we report the first High Kinetic Energy-Ion Mobility Spectrometry-Mass Spectrometric (HiKE-IMSMS) investigations involving four fluranes; isoflurane, enflurane, sevoflurane and desflurane. Unlike standard (atmospheric pressure) IMS, HiKEIMS can detect these compounds in positive ion mode. This is because its low-pressure environment (similar to 14 mbar) and the associated short ion drift times in the HiKEIMS ensure the reagent ions O-2+(center dot) and H3O+ are present in the reaction region, and these can react with the fluranes by dissociative charge and proton transfer, respectively. However, their ion intensities are very dependent on the value of the reduced electric field (E/N) applied and the humidity of the air in the reaction region of the HiKE-IMS. In this paper we explore the potential use of HiKE-IMS for air quality control and breath analysis of fluranes. To help in the interpretation of the ion mobility spectra, and hence the ion-flurane chemistry occurring in reaction region, a HiKE-IMS was coupled to a Time-of-Flight Mass Spectrometer so that the m/z values of both the reagent and product ions that are contained within the various ion mobility peaks observed could be identified with a high level of confidence. The dependencies of the intensities of these ions as functions of E/N (30-115 Td) and humidity in the reaction region are reported. A number of product ions have been observed only under low humidity conditions (H2O volume-mixing ratio 100 ppm(v)), including CHF(2+)and CHFCl (+) for isoflurane and enflurane, CHF2(+), CF3(+) and C3H2F5O+ for desflurane, and CH3O+, CHF2+, C3H3F4O+, C4H3F6O+ and C4H3F6O+(H2O) for sevoflurane. It is interesting to note that CH3O+, CHF2+, CHFCl+ and CF3+ have shorter drift times than that measured for O-2(+center dot) This is explained by resonant charge transfer reaction processes occurring in the drift region: O-2(+center dot) + O-2 ? O-2+(center dot).O O-2 + O-2 +(center dot) (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt

    Get PDF
    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R_* = 0.9058±\pm0.0190 R\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863±\pm0.043 M\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95+/-0.19 AU, which is outside the orbit of all three planets and its asteroid belt.Comment: 5 pages, 3 figures, accepted to Ap

    High kinetic energy-ion mobility spectrometry-mass spectrometry investigations of several volatiles and their fully deuterated analogues

    Get PDF
    The first High Kinetic Energy-Ion Mobility Spectrometry-Mass Spectrometry (HiKE-IMS-MS) studies involving six volatiles (acetone, acetonitrile, methanol, ethanol, 2-propanol, and 1-butanol) and their fully deuterated analogues are reported. The goal is to further our understanding of the ion-molecule chemistry occurring in the HiKE-IMS. This is needed for its full analytical potential to be reached. Product ions are identified as a function of the reduced electric field (30-115 Td) and the influence of sample air humidity in the reaction region on deuterium/hydrogen (D/H) exchange reactions is discussed. Reagent ions include H3O+(H2O)(m), (n = 0, 1, 2 or 3), NO+(H2O)(n) (m = 0 or 1) and O-2(+center dot). Reactions with H3O+(H2O)(m), lead to protonated monomers (through either proton transfer or ligand switching). Reactions with NO+ involve association with acetone and acetonitrile, hydride anion abstraction from ethanol, 2-propanol, and 1-butanol, and hydroxide abstraction from 2-propanol and 1-butanol. With the exception of acetonitrile, O-2(+center dot) predominantly reacts with the volatiles via dissociative charge transfer. A number of sequential secondary ion-volatile processes occur leading to the formation of dimer and trimer-containing ion species, whose intensities depend on a volatile's concentration and the reduced electric field in the reaction region. Deuterium/hydrogen (D/H) exchange does not occur for product ions from acetone-d(6) and acetonitrile-d(3), owing to their inert methyl functional groups. For the deuterated alcohols, rapid D/H-exchange reaction at the hydroxy group is observed, the amount of which increased with the increasing humidity of the sample air and/or lowering of the reduced electric field.Peer reviewe

    Stellar Diameters and Temperatures. I. Main-Sequence A, F, and G Stars

    Get PDF
    We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars
    corecore