
A fingerprint based metric for measuring similarities of crystalline structures
Li Zhu, Maximilian Amsler, Tobias Fuhrer, Bastian Schaefer, Somayeh Faraji, Samare Rostami, S. Alireza
Ghasemi, Ali Sadeghi, Migle Grauzinyte, Chris Wolverton, and Stefan Goedecker,

Citation: The Journal of Chemical Physics 144, 034203 (2016); doi: 10.1063/1.4940026
View online: http://dx.doi.org/10.1063/1.4940026
View Table of Contents: http://aip.scitation.org/toc/jcp/144/3
Published by the American Institute of Physics

Articles you may be interested in
Metrics for measuring distances in configuration spaces
The Journal of Chemical Physics 139, 184118184118 (2013); 10.1063/1.4828704

Computationally efficient characterization of potential energy surfaces based on fingerprint distances
The Journal of Chemical Physics 145, 034101034101 (2016); 10.1063/1.4956461

Crystal structure prediction using the minima hopping method
The Journal of Chemical Physics 133, 224104224104 (2010); 10.1063/1.3512900

Minima hopping: An efficient search method for the global minimum of the potential energy surface of
complex molecular systems
The Journal of Chemical Physics 120, (2004); 10.1063/1.1724816

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Zhu%2C+Li
http://aip.scitation.org/author/Amsler%2C+Maximilian
http://aip.scitation.org/author/Fuhrer%2C+Tobias
http://aip.scitation.org/author/Schaefer%2C+Bastian
http://aip.scitation.org/author/Faraji%2C+Somayeh
http://aip.scitation.org/author/Rostami%2C+Samare
http://aip.scitation.org/author/Ghasemi%2C+S+Alireza
http://aip.scitation.org/author/Ghasemi%2C+S+Alireza
http://aip.scitation.org/author/Sadeghi%2C+Ali
http://aip.scitation.org/author/Grauzinyte%2C+Migle
http://aip.scitation.org/author/Wolverton%2C+Chris
http://aip.scitation.org/author/Goedecker%2C+Stefan
/loi/jcp
http://dx.doi.org/10.1063/1.4940026
http://aip.scitation.org/toc/jcp/144/3
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4828704
/doi/abs/10.1063/1.4956461
/doi/abs/10.1063/1.3512900
/doi/abs/10.1063/1.1724816
/doi/abs/10.1063/1.1724816


THE JOURNAL OF CHEMICAL PHYSICS 144, 034203 (2016)

A fingerprint based metric for measuring similarities
of crystalline structures

Li Zhu,1 Maximilian Amsler,1,2 Tobias Fuhrer,1 Bastian Schaefer,1 Somayeh Faraji,3
Samare Rostami,3 S. Alireza Ghasemi,3 Ali Sadeghi,4 Migle Grauzinyte,1 Chris Wolverton,2
and Stefan Goedecker1,a)
1Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland
2Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
3Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran
4Physics Department, Shahid Beheshti University, G. C., Evin, 19839 Tehran, Iran

(Received 23 July 2015; accepted 30 December 2015; published online 21 January 2016)

Measuring similarities/dissimilarities between atomic structures is important for the exploration of
potential energy landscapes. However, the cell vectors together with the coordinates of the atoms,
which are generally used to describe periodic systems, are quantities not directly suitable as finger-
prints to distinguish structures. Based on a characterization of the local environment of all atoms
in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational
distances between crystalline structures that satisfy the mathematical properties of a metric. This
distance between two configurations is a measure of their similarity/dissimilarity and it allows in
particular to distinguish structures. The new method can be a useful tool within various energy land-
scape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms,
and high-throughput screenings. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940026]

I. INTRODUCTION

Large data sets of crystalline structures are nowadays
available in two major contexts. On one hand, databases of
materials have been created containing structural information
of both experimental and theoretical compounds from high-
throughput calculations, which are the basis for data-mining
techniques in materials discovery projects.1–7 On the other
hand, ab initio structure predictions8–15 can produce a huge
number of new structures that have either not yet been found
experimentally or are metastable.16–21 In both cases, it is
essential to quantify similarities and dissimilarities between
structures in the data sets, requiring a configurational distance
that satisfies the properties of a metric. Databases frequently
contain duplicates and insufficiently characterized structures
which need to be identified and filtered. In experimental data,
the representation of identical structures as obtained from
different experiments will always slightly differ due to noise
in the measurements, such that the configurational distance
is never exactly zero. Noise is also present in theoretical
calculations where a geometry relaxation is, for instance,
stopped once a certain, possibly insufficient convergence
threshold is reached. In ab initio structure prediction schemes,
it is typically necessary to maintain some structural diversity
which can be quantified as a certain minimal configurational
distance. All these examples clearly show the need for a
metric that allows to measure configurational distances and
local structures in a reliable and efficient way.

Crystalline structures are typically given in a dual repre-
sentation. The first part specifies the cell and the second part the
atomic positions within the cell. The former can, for instance,

a)Electronic mail: stefan.goedecker@unibas.ch

be given by the three lattice vectors a, b, and c, or by their
lengths a, b and c, and the intermediate angles α, β, and γ.
The atomic positions can either be specified by cartesian coor-
dinates or by reduced coordinates with respect to the lattice
vectors. However, such representations are not unique, since
any choice of lattice points can serve as cell vectors of the
same crystalline structure. Unique and preferably standardized
cell parameters are required for comparison and analysis of
different crystals.22 Algorithms to transform unit cells to a
reduced form are frequently used in crystallography, such as
the Niggli-reduction23–27 which produces cells with shortest
possible vectors (|a + b + c| = minimal). Unfortunately, in the
presence of noisy lattice vectors, cells can change discon-
tinuously within the Niggli-reduction algorithm. Symmetry
analysis and the corresponding classification in the 230 crys-
tallographic space groups are another tool to compare crys-
tal structures. However, the outcome of a symmetry analysis
algorithm strongly depends on a tolerance parameter such
that the introduction of some noise can change the resulting
space group in a discontinuous manner. Because of the above
described problems, it is difficult to quantify similarities based
directly on dual representations.

Within the structure prediction community, fingerprints
that are not directly based on such a dual representation
have been proposed. Radial distribution functions have been
used as a fingerprint to measure the distances between crystal
structures,28,29 as well as methods based on comparison of the
calculated powder diffraction patterns.30,31 In the same spirit,
Oganov and Valle32 used element resolved radial distribution
functions as a crystal fingerprint. For a crystal containing
one element, only a single function is obtained for the
entire system. The difference between the radial distribution
functions of two crystals is then taken as the configurational
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distance. By definition, the radial distribution function
contains only radial information, but no information about the
angular distribution of the atoms. Such angular information
has been added in the bond characterization matrix (BCM)
fingerprint.13,33 In this fingerprint, spherical harmonic and
exponential functions are used to set up modified bond-
orientational order descriptors34 of the entire configuration.
The distance between two configurations can be measured by
the Euclidean distance between their BCMs. For molecular
crystals, Chisholm et al.35 used intermolecular contact dis-
tances and a matching algorithm to characterize and compare
structures. Atomic and molecular environment descriptors are
also needed in the context of machine learning schemes
for force fields,36–38 bonding pattern recognition,39 or to
compare vacancy, interstitial, and intercalation sites.40 These
descriptors could also be used to measure similarities between
structures. Even though they have never been used in this
context, we will present a comparison with such a descriptor.

When humans decide by visual inspection whether two
structures are similar, they proceed typically in a different
way. They try to find matching atoms which have the same
structural environment. If all the atoms in one structure can
be matched with the atoms of the other structure, the two
structures are considered to be identical. Such a matching
approach based on the Hungarian algorithm41 has already
turned out to be useful for the distinction of clusters.42,43

In this paper, we will present a fingerprint for crystalline
structures which is based on such a matching approach.
The environment of each atom is described by an atomic
fingerprint which is calculated in real space for an infinite
crystal and represents some kind of environmental scattering
properties observed from the central atom. Therefore, all the
ambiguities of a dual representation do not enter into the
fingerprint, allowing an efficient and precise comparison of
structures.

II. FINGERPRINT DEFINITION

Recently, we have proposed a configurational fingerprint
for clusters.43 In this approach, an overlap matrix is calculated
for an atom centered Gaussian basis set. The vector formed by
the eigenvalues of this matrix forms a global fingerprint that
characterizes the entire structure. The Euclidean norm of the
difference vector between two structures is the configurational
distance between them and satisfies the properties of a metric.

Since there is no unique representation of a crystal by a
group of atoms (e.g., the atoms in some unit cell), we will
use atomic fingerprints instead of global fingerprints in the
crystalline case. However, this atomic fingerprint is closely
related to our global fingerprint for non-periodic systems. For
each atom k in a crystal located at Rk, we obtain a cluster
of atoms by considering only those contained in a sphere
centered at Rk. For this cluster, we calculate the overlap
matrix elements Sk

i, j as described in Ref. 43 for a non-periodic
system, i.e., we put on each atom one or several Gaussian
type orbitals and calculate the resulting overlap integral. The
orbitals are indexed by the letters i and j and the index w(i)
gives the index of the atom on which the Gaussian Gi(r) is

centered, i.e.,

Sk
i, j =


dr Gi(r − Rw(i)) G j(r − Rw( j)). (1)

In this first step, the amplitudes of the Gaussians cnorm are
chosen such that the Gaussians are normalized to one, and
the width of each Gaussian Gi(r) is given by the covalent
radius of the atom w(i) on which it is centered. To avoid
discontinuities in the eigenvalues when an atom enters into
or leaves the sphere, we construct in a second step another
matrix T k such that

T k
i, j = fc(|Rw(i) − Rk |)Sk

i, j fc(|Rw( j) − Rk |). (2)

The cutoff function fc smoothly goes to zero on the surface
of the sphere with radius

√
2nσc,

fc(r) =
(
1 − r2

2nσ2
c

)n
. (3)

In the limit where n tends to infinity, the cutoff function
converges to a Gaussian of width σc. The characteristic
length scale σc is typically chosen to be the sum of the two
largest covalent radii in the system.

The value n determines how many derivatives of the
cutoff function are continuous on the surface of the sphere,
and n = 3 was used in the following. One can consider the
modified matrix T k to be the overlap matrix of the cluster
where the amplitude of the Gaussian at atom i is determined
by cnorm fc(|Ri − Rk |). In this way atoms close to the surface
of the sphere give rise to very small eigenvalues of T k and
are thus weighted less than the atoms closer to the center.
The eigenvalues of this matrix T k are sorted in descending
order and form the atomic fingerprint vector Vk. Since we
cannot predict exactly how many atoms will be in the sphere,
we estimate a maximum length for the atomic fingerprint
vector. If the number of atoms is too small to generate enough
eigenvalues to fill up the entire vector, the entries at the end
of the fingerprint vector are filled up with zeros. This also
guarantees that the fingerprint is a continuous function with
respect to the motion of the atoms when atoms might enter or
leave the sphere. If an atom enters into the sphere, some zeros
towards the end of the fingerprint vector are transformed
in a continuous way into some very small entries which
only contribute little to the overall fingerprint. The Euclidean
norm |Vk − Vl | measures the dissimilarity between the atomic
environments of atoms k and l.

The atomic fingerprints Vp

k
and Vq

k
of all the Nat atoms

in two crystalline configurations p and q can now be used
to define a configurational distance d(p,q) between the two
crystals,

d(p,q) = min
P

*
,

Nat
k

|Vp

k
− Vq

P(k)|2+
-

1/2

, (4)

where P is a permutation function which matches a certain
atom k in crystal p with atom P(k) in crystal q. The optimal
permutation function which minimizes d(p,q) can be found
with the Hungarian algorithm41 in polynomial time. If the two
crystals p and q are identical, the Hungarian algorithm will
in this way assign corresponding atoms to each other. The
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Hungarian algorithm needs as its input only the cost matrix C
given by

Ck,l = |Vp

k
− Vq

l
|2.

In the following, it will be shown that d(p,q) satisfies the
properties of a metric, namely,

• positiveness: d(p,q) ≥ 0,
• symmetry: d(p,q) = d(q,p),
• coincidence axiom: d(p,q) = 0 if and only if p = q,
• triangle inequality: d(p,r) + d(r,q) ≥ d(p,q).
From the definition (Eq. (4)), it is obvious that the

positiveness and symmetry conditions are fulfilled. The
coincidence theorem is satisfied if the individual atomic
fingerprints are unique, i.e., if there are not two different atomic
environments that give rise to identical atomic fingerprints.
In our work on fingerprints for clusters, we have shown that
the fingerprints can be considered to be unique if they have a
length larger or equal to 3 per atom. The triangle inequality
can be established in this way,

d(p,r) + d(r,q)= *
,

Nat
k

|Vr
k − Vp

P(k)|2+
-

1/2

+ *
,

Nat
k

|Vr
k − Vq

P′(k)|2+
-

1/2

≥ *
,

Nat
k

|Vp

P(k) − Vq

P′(k)|2+
-

1/2

≥ *
,

Nat
k

|Vp

k
− Vq

Q(k)|2+
-

1/2

= d(p,q),
where P, P′, and Q are assumed to be the permutations that
minimize respectively the Euclidean vector norms associated
to d(p,r), d(r,q), and d(p,q).

III. CONTRACTED FINGERPRINTS

Since the Rk-centered spheres contain typically about 50
atoms, an atomic fingerprint has at least length 50 if only s-type
Gaussian orbitals or length 200 if both s and p orbitals are
used. Since a configuration is characterized by the ensemble
of all the atomic fingerprints of all the atoms in the cell, the
amount of data needed to characterize a structure is quite
large even though it is certainly manageable for crystals with
a small number of atoms per unit cell. Storage requirements
might however become too high in certain cases such as large
molecular crystals. We will, therefore, introduce contraction
schemes that allow to considerably reduce the amount of data
necessary to characterize a crystalline structure. Two such
schemes will briefly be discussed below.

A. Contractions by properties

Let us introduce a function τ(i) that designates a certain
property of the Gaussian orbital i and encodes it in form
of a contiguous integer index. In case of a multicomponent

crystal, it can indicate on which kind of chemical element
the Gaussians are centered and whether the orbital is of s
or p type. The principal vector is thus chopped into pieces
whose elements all carry the same value τ(i). In the following
presentation of numerical results, we have always considered
the central atom to be special, independent of its true chemical
type. Having m atomic species in the unit cell and using atomic
Gaussian orbitals with a maximum angular momentum lmax,
τ(i) runs from 1 to (m + 1)(lmax + 1). Now we can construct a
contracted matrix tk,

tkν,µ =

i, j

δν,τ(i)uk
i T

k
i, ju

k
j δµ,τ( j),

together with its metric tensor sk,

skν,µ =

i

δν,τ(i)uk
i uk

j δµ,τ( j),

where uk is the principal vector of the matrix T k of Eq. (2).
The eigenvalues λ of the generalized eigenvalue problem,

tkv = λskv,

form again an atomic fingerprint of length (m + 1)(lmax + 1)
which is much shorter than the non-contracted fingerprint Vk.

B. Contractions to form molecular orbitals
for molecular crystals

The fingerprints described so far can in principle also
be used for molecular crystals. However, the amount of data
needed to characterize such crystals can be quite large if
the molecules forming the crystal contain many atoms. By
creating molecular orbitals in analogy with standard methods
in electronic structure calculations, the required amount of
data can be considerably reduced. The eigenvalues arising
from the overlap matrix in this molecular basis set will then
form a fingerprint for the molecular crystal. The molecular
orbitals can be obtained in the following way: for each
molecule k in our unit cell, we cut out a cluster of molecules
within a sphere of a certain radius. For each molecule α in
this sphere, we set up the overlap matrix by putting Gaussian
type orbitals on all its constituent atoms. Then, we calculate
for this matrix the eigenvalues and eigenvectors. The principal
vectors Wα,µ belonging to several of the largest eigenvalues
λα
µ are subsequently used for the contraction,

Sk
α,µ;β,ν =


i, j

Wα,µ
i Sk

i, jW
β,ν
j . (5)

No metric tensor is required since the set of vectors used
for the contraction is orthogonal. The molecular orbitals have
characteristic patterns, such that the orbital corresponding to
the first principal vector has no nodes, while the orbitals of the
following principal vectors have increasing number of nodes.
They are therefore similar to the atomic orbitals of s, p and
higher angular momentum character, which were used for the
fingerprints in the ordinary crystals. In Fig. 1, these orbitals
are shown for the case of the paracetamol molecule.

By multiplying S with some cutoff function as in Eq. (3),
we can then obtain molecule centered overlap matrices in
this molecular basis which is free of discontinuities with
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FIG. 1. The nodal character of the first six principal vectors for the paraceta-
mol molecule. The atoms are colored according to the sign of the elements
of the first six principal vectors Wα,µ. A systematic colour pattern can
be observed. The first principal eigenvector never changes sign and has
therefore no nodes (a). Higher principal vectors exhibit more and more nodes
((b)-(f)).

respect to the motion of the atoms. In the molecular case,
the value of the cutoff function depends on some short range
pseudo-interaction between the central and the surrounding
molecules. This interaction Uk,α between the central molecule
k and another molecule α is given by

Uk,α =

i, j

*..
,
1 −

d2
i, j

2n
(
σvan

i, j

)2

+//
-

n

, (6)

where the sum over i runs over all the atoms in the central
molecule k and the sum over j over all the atoms in the
surrounding molecule α. di, j is the distance between the
atoms i and j and σvan

i, j is the sum of the van der Waals radii
of the two atoms. The interaction is taken to vanish beyond
its first zero. Because of the short range of the interaction,
molecules sharing a large surface will be coupled strongly.
The analytical form of the cutoff function is identical to the
one for the atomic case (Eq. (3)). However, since a cartesian
distance between molecules is ill defined, the argument in
Eq. (3) is modified. The scaled distance rσc between the
atoms is replaced by the normalized interaction between the
molecules,

Uk,α

Uk,k
.

The eigenvalues of this final overlap matrix form now a
fingerprint describing the environment of this molecule k with
respect to the other molecules. To compare two structures,
this procedure is done for all molecules contained in the cor-
responding unit cell. A configurational distance is calculated
then as in Eq. (4) by using the Hungarian algorithm.41

IV. APPLICATION OF FINGERPRINT DISTANCES
TO EXPERIMENTAL STRUCTURES

Structural data found in various material databases are
frequently obtained from measurements at different tempera-
tures which results in thermal expansion. Similarly, measure-
ments at different pressures or low quality x-ray diffraction
patterns can lead to slight cell distortions. Obviously, our
fingerprint distances among such expanded or distorted but
otherwise identical structures are different from zero. For these
reasons, we have introduced a scheme where the six degrees of
freedom associated to the cell are optimized while keeping the
reduced atomic coordinates fixed such as to obtain the smallest
possible distance to a reference configuration. The gradient
of our fingerprint distance with respect to the lattice vectors
can be calculated analytically using the Hellmann Feynman
theorem. An application of the lattice optimization scheme was
applied to a subset of ZrO2 structures taken from the Open
Quantum Materials Database (OQMD),2,7 as will be discussed
in further detail later in Sec. V.

V. NUMERICAL TESTS

Fig. 2 shows all possible pairwise configurational
distances obtained with several fingerprints for various data
sets. Different fingerprints are plotted along the x and y
axis. Hence, for two different fingerprints which performed
identically well all data points would lie on a diagonal
line. Furthermore, an ideal fingerprint produces a clear gap
in the fingerprint distances, separating structures that are
either classified as identical or different. LFP stands for the
uncontracted long fingerprint and in square parenthesis it
is indicated whether only s or both s and p orbitals were
used to set up the overlap matrix, SFP[s] stands for the
short contracted fingerprint with s orbitals only where the
properties used for the contraction are central atom and
the element type of the neighboring atoms in the sphere.
For materials that have only one type of element (Si in
our case), the atomic fingerprint has only length two and
the coincidence theorem is not satisfied. Even though there
are hyperplanes in the configurational space where different
configurations have identical fingerprints, it is very unlikely
that different local minima lie on such hyperplanes and the
fingerprint can therefore nevertheless well distinguish between
identical and distinct structures. If both s and p orbitals are
used (SFP[sp]), the atomic fingerprint has at least length
4 and no problem with the coincidence theorem arises. In
addition, we also show the configurational distances arising
from the Oganov and Valle and BCM13,33 fingerprints as well
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FIG. 2. Correlation between different fingerprints for all the 8 test sets obtained during structure prediction runs. SFP[x] and LFP[x] indicate short and long
fingerprints with x orbitals, respectively. “Opt high” and “Opt low” indicate the quality of the geometry relaxation.

as from a fingerprint based on the amplitudes of symmetry
functions.36 All our data sets contain both the global minimum
(geometric ground state) as well as local minima (metastable)
structures, obtained from minima hopping runs.9 Energies
and forces were calculated with the Density Functional based
Tight binding method (DFTB+)44 method for SiC and the
molecular crystals, and the Lenosky tight-binding scheme was
used for Si.45 For the CsPbI3 perovskite and the transparent

conductive oxide Zn2SnO4, plane wave density functional
theory (DFT) calculations were used as implemented in the
Quantum Espresso code.46,47

The first test set consists of clathrate like structures of
low density silicon allotropes.48 Low density silicon gives
rise to a larger number of low energy crystalline structures
than silicon at densities of diamond silicon and thus poses
an ideal benchmark system. In the first line of the figure,
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FIG. 3. Correlation between the energy difference and the fingerprint distance for all the 8 theoretical test setting of Fig. 2.

we show the results of a relatively sloppy local geometry
optimization, where the relaxation is stopped once the forces
are smaller than 0.05 eV/Å. Gaps separating identical from
distinct structures are hardly visible for all fingerprints. Once
a very accurate geometry optimization with a force threshold
of 5 meV/Å is performed, gaps become visible for all the
fingerprints.

The second data set is silicon carbide, a material well
known for its large number of polytypes. Our fingerprint gives
rise to a small gap whereas the configurational distances based
on all other fingerprints do not show any gap at all. The opening
of a gap can again be observed once the geometry optimization
is done with high accuracy. For this case, all fingerprints result
in a gap, but like for all test sets, it is the least pronounced for
the BCM fingerprint. Both the Oganov and BCM fingerprints
are global ones and in the required averaging process over all
the atoms more and more information is lost as the system
gets larger. Therefore, it is not surprising that the gap again
disappears even for the high quality geometry optimization
once one goes to large cells.

The next two test sets consist of an oxide material
and a perovskite with their characteristic building blocks
of octahedra and tetrahedra which can be arranged in a very
large number of different ways. All our fingerprints give rise
to clear gaps separating identical from distinct structures. The
Oganov fingerprint also gives rise to clear gaps whereas the
BCM fingerprint only weakly indicates some gap. The Behler
fingerprint gives a well pronounced gap for Zn2SnO4 but only
a blurred gap for CsPbI3.

The last theoretical test system is a platinum surface.
In this case, the energies were calculated with the Morse
potential.49,50 The geometry optimization was done with high
accuracy and therefore a big gap is visible in all cases.

Fig. 3 shows the correlation between the energy difference
and the fingerprint distance for all the test cases of Fig. 2.
Except for the very large 256 atoms system, there exists always

a clear energy gap if the geometry optimization was done with
high accuracy. Even though there is of course the possibility
of nearly degenerate structures, this seems to happen rarely in
practice and energy is thus a rather good and simple descriptor
for small unit cells.

To test our molecular fingerprint (MFP), two test
systems were employed, namely, crystalline formaldehyde
and paracetamol. The formaldehyde system comprised 240
structures with 8 molecules per cell and the paracetamol

FIG. 4. Top panels: Correlation between the energy difference and the
molecular fingerprint (MFP) distance for formaldehyde (a) and paracetamol
(b). Bottom panels: Correlation between molecular fingerprint distance and
standard fingerprint distance (short contracted fingerprint with s orbitals only,
SFP[s]) for formaldehyde (c) and paracetamol (d).
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system 300 structures with 4 molecules per cell. The two top
panels of Fig. 4 show the molecular fingerprint distance versus
the energy difference of different structures of paracetamol and
formaldehyde, respectively. The two bottom panels show the
correlation of the standard fingerprint against the molecular
fingerprint for both systems. The existence of a gap in the
pairwise distance distributions clearly indicates that identical
and distinct structures can be identified by both fingerprints.
However, the molecular fingerprint vector is considerably
shorter because only six principal vectors were used (shown
in Fig. 1). Since six is the number of degrees of freedom of a
rigid rotator, it is expected that this fingerprint is long enough
to satisfy the coincidence theorem.

COMPACK is a program developed by Chisholm et al.35

to compare molecular crystal structures. It is interfaced
with the Cambridge Structural Database System through the
CSD Python API.51 Both the formaldehyde and paracetamol
test sets were used to compare the accuracy of the new
and the COMPACK molecular fingerprint methods. Fig. 5
shows the COMPACK fingerprint distances plotted against
our molecular fingerprint. In the panels (a) and (b), the
default tolerance values of COMPACK was used, namely,
distance tolerance = 20% and angle tolerance = 20◦ whereas
for panels (c) and (d), we used larger values of 40% and
40◦, respectively. In all 4 cases, there is a gap, showing that
both methods are capable to distinguish between identical
and different structures. Overall, the gaps for the distances
computed by COMPACK are significantly smaller than with
our new fingerprint. Especially for paracetamol with the
default tolerances, the gap almost vanishes. Increasing the
tolerances improves the gap (see panels (c) and (d)), and both
fingerprints perform similarly well.

FIG. 5. Comparison of the new molecular fingerprint (MFP) distance with
the COMPACK structural comparison engine as interfaced through the CSD
Python API for formaldehyde in (a) and (c) and paracetamol in (b) and
(d). Panels (a) and (b) and (c) and (d) show on the y-axis the COMPACK
distances computed with distance/angle tolerances of 20%/20◦ and 40%/40◦,
respectively.

Next, we applied our fingerprint to ZrO2 structures
contained in the OQMD. 115 different entries were available
at this composition. The structures were either based on
experimental data originating from the Inorganic Crystal
Structure Database (ICSD) or on binary structural prototypes.
When the OQMD was initially created, duplicate entries
were identified with the structure comparison algorithm as
implemented in the Materials Interface (MINT) software
package52 which employs a 6-level test that includes cell
reduction as well as an analysis of the lattice symmetry.
Structures classified as identical to an existing entry in OQMD
were mapped to that entry without performing a structural
relaxation. Therefore, the structural data set contains both
DFT optimized and experimental structures, resulting in noise
on the atomic and cell coordinates arising from the numerical
calculations as well as from the different experiments and
thermal effects. In Fig. 6(a), we show the ordinary and
the lattice vector optimized fingerprint distances for all 115
structures from the database. We can see that the optimization
process can reduce the fingerprint distance down to about 10−7

for many structures. For some of them, the initial fingerprint

FIG. 6. Panel (a) shows along the x-axis the ordinary fingerprint distances
and along the y-axis the lattice optimized fingerprint distances for the ZrO2
structures retrieved from the OQMD. Distances between two structures that
were identified as identical by the structural comparison algorithm imple-
mented in MINT are shown in red and structures that were identified as
distinct are shown in blue. Panel (b) shows the correlation between the DFT
energy differences among all relaxed structures and the ordinary fingerprint
distances.
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distances were as large as 0.1. This allows to detect some
identical structures whose initial large fingerprint distance
was only due to thermal expansion. However, even with lattice
vector optimization, it was not possible to decide for the whole
data set in an inambiguous way which structures are identical
and which were not. Therefore, local geometry optimizations
were performed at the DFT level for all structures using the
VASP code.53–55 A plane wave cutoff energy of 520 eV was
used together with a dense k-point mesh. Both the atomic and
cell variables were relaxed until the maximal force component
was less than 2 meV/Å and the stress below 0.01 GPa. Panel
(b) of Fig. 6 shows the DFT energy differences of the relaxed
structures against the fingerprint distances, showing a clear
gap that allows to distinguish between identical and different
structures. Applying the lattice vector optimization scheme
on these relaxed structures was not able to further lower
the fingerprint distances of identical structures. The coloring
in Fig. 6 indicates how the two structures belonging to a
fingerprint distance were classified by MINT. Assuming that
there are no different structures with degenerate DFT energies,
one can conclude that MINT was not able to extract from
the non-relaxed data set the information whether structures
are identical or not and has erroneously assigned numerous
identical structures as distinct and vice versa to a lesser extent.

Since both Oganov and BCM methods are global
fingerprints that discard crucial information, they can fail
to describe structural differences, a problem that becomes
especially apparent when considering defect structures in
complex materials. As an example, a 2 × 2 × 2 supercell was
constructed of the cubic perovskite structure of LaAlO3.56

Half of the Al atoms on the B-sites were replaced by
Mn. Then, single oxygen vacancies were introduced on
symmetrically inequivalent X-sites. Obviously, the structural
symmetry was reduced from the initial space group Pm3̄m
of LaAlO3 to the orthorhombic space group Amm2 of the
supercell La(Al,Mn)O3, and the oxygen vacancies resulted
in structures with Cm and Pm symmetry. Both MINT and
our fingerprint confirm that the structures are clearly different,
whereas the Oganov and BCM fingerprint erroneously classify
both structures as identical.

VI. CONCLUSIONS

Atomic fingerprints that describe the scattering properties
as obtained from an overlap matrix are well suited to
characterize atomic environments. An ensemble of atomic
fingerprints forms a global fingerprint that allows to identify
crystalline structures and to define configurational distances
satisfying the properties of a metric. The widely used Oganov
and BCM fingerprints do not have these properties and do also
in practice not allow a reliable way to distinguish identical
from distinct structures. Symmetry function based fingerprints
are of similar quality as our scattering fingerprints. However,
they are much more costly to calculate. Both fingerprints have
a cubic scaling with respect to the number of atoms within the
cutoff range, but our prefactor of the matrix diagonalization is
much smaller then the prefactor for the 3-body terms required
for the calculation of the symmetry functions. In contrast to

“true”–“false” schemes such as employed in MINT which
rely on a threshold and affirm that two structures are either
identical or distinct, our fingerprint gives a distance between
configurations. The appearance of a gap in the distance
distribution indicates that a reliable assignment of identical
and distinct structures can be performed. In addition, strong
reductions in the fingerprint distances upon lattice vector
optimization can detect and eliminate thermal noise on the
data set, rendering our fingerprint ideal to scan for duplicates
in large structural databases. Furthermore, the fingerprint
distance can be used as a simple measure of the similarity
between two structures with a higher likelihood that they are
identical if the fingerprint distance is small. In this context,
machine learning methods (such as Bayesian techniques,57

support vector machines,58 and neural network59–62) could be
trained with attributes derived from our fingerprint to better
quantify crystal structure similarities. The new fingerprint can
also accurately explore local environments to create atomic
and structural attributes for machine learning techniques
trained to predict material properties. Our scheme can easily
be extended to molecular crystals by introducing quantities
that are analogous to molecular orbitals. Even for large
molecular crystals, the molecular fingerprint is short and
still very accurate. They could thus be used in the context
of crystal structure prediction, where the potential energy
surface is explored and a large number of structures need to
be compared to eliminate duplicates. In summary, we have
demonstrated that our novel approach allows to characterize
crystalline structures by rather short fingerprint vectors and to
decide more reliably whether structures are identical or not
than previously proposed methods.

ACKNOWLEDGMENTS

We thank Vinay Hegde and Antoine Emery for
valuable expert discussions. This work was done within
the NCCR MARVEL project. M.A. gratefully acknowledges
support from the Novartis Universität Basel Excellence
Scholarship for Life Sciences and the Swiss National Science
Foundation. C.W. acknowledges financial support from the
U.S. Department of Energy under Grant No. DE-FG02-
07ER46433. Computer resources were provided at the CSCS
under project No. s499 and the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

1D. Morgan, G. Ceder, and S. Curtarolo, Meas. Sci. Technol. 16, 296 (2004).
2J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65,
1501 (2013).

3S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii,
R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes,
D. O. Demchenko, and D. Morgan, Comput. Mater. Sci. 58, 218 (2012).

4A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, and K. a. Persson, APL Mater. 1, 011002
(2013).

5M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter,
C. Krishna Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G.
Ceder, K. A. Persson, and M. Asta, Sci. Data 2, 150009 (2015).

6X. Qu, A. Jain, N. N. Rajput, L. Cheng, Y. Zhang, S. P. Ong, M. Brafman,
E. Maginn, L. A. Curtiss, and K. A. Persson, Comput. Mater. Sci. 103, 56
(2015).

http://dx.doi.org/10.1088/0957-0233/16/1/039
http://dx.doi.org/10.1007/s11837-013-0755-4
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
http://dx.doi.org/10.1063/1.4812323
http://dx.doi.org/10.1038/sdata.2015.9
http://dx.doi.org/10.1016/j.commatsci.2015.02.050


034203-9 Zhu et al. J. Chem. Phys. 144, 034203 (2016)

7S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S.
Rühl, and C. Wolverton, “The Open Quantum Materials Database (OQMD):
Assessing the accuracy of DFT formation energies,” npj Comput. Mater. 1,
15010 (2015).

8S. Goedecker, J. Chem. Phys. 120, 9911 (2004).
9M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010).

10C. W. Glass, A. Oganov, A. R. Oganov, and N. Hansen, Comput. Phys.
Commun. 175, 713 (2006).

11C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201
(2011).

12Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
13Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063

(2012).
14J. C. Schön and M. Jansen, Z. Kristallogr. - Cryst. Mater. 216, 307 (2001).
15S. M. Woodley, P. D. Battle, J. D. Gale, C. Richard, and A. Catlow, Phys.

Chem. Chem. Phys. 1, 2535 (1999).
16M. Amsler, J. Flores-Livas, L. Lehtovaara, F. Balima, S. Ghasemi, D.

Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S.
Goedecker, and M. Marques, Phys. Rev. Lett. 108, 065501 (2012).

17M. Amsler, J. A. Flores-Livas, T. D. Huan, S. Botti, M. A. L. Marques, and
S. Goedecker, Phys. Rev. Lett. 108, 205505 (2012).

18M. Amsler, S. Botti, M. A. L. Marques, and S. Goedecker, Phys. Rev. Lett.
111, 136101 (2013).

19L. Zhu, Z. Wang, Y. Wang, G. Zou, H.-k. Mao, and Y. Ma, Proc. Natl. Acad.
Sci. U. S. A 109, 751 (2012).

20L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, Nat. Chem. 6, 644 (2014).
21W. Zhang, A. Oganov, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E.

Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka,
and Z. Konopkova, Science 342, 1502 (2013).

22D. C. Lonie and E. Zurek, Comput. Phys. Commun. 183, 690 (2012).
23P. Niggli, Kristallographische und Strukturtheoretische Grundbegriffe,

Handbuch der Experimentalphysik Vol. 7 (Akademische Verlagsgesells-
chaft, 1928).

24R. W. Grosse-Kunstleve, N. K. Sauter, and P. D. Adams, Acta Crystallogr.,
Sect. A: Found. Crystallogr. 60, 1 (2004).

25K. J. McGill, M. Asadi, M. T. Karakasheva, L. C. Andrews, H. J. Bernstein,
and IUCr, J. Appl. Cryst. 47, 360 (2014).

26L. C. Andrews and H. J. Bernstein, e-print arXiv:1203.5146 (2012).
27L. C. Andrews and H. J. Bernstein, J. Appl. Cryst. 47, 346 (2014).
28B. P. Van Eijck and J. Kroon, J. Comput. Chem. 18, 1036 (1997).
29P. Verwer and F. J. J. Leusen, Computer simulation to predict possible crystal

polymorphs, Reviews in Computational Chemistry Vol. 12 (John Wiley &
Sons, Inc., Hoboken, NJ, USA, 1998).

30H. R. Karfunkel, B. Rohde, F. J. J. Leusen, R. J. Gdanitz, and G. Rihs, J.
Comput. Chem. 14, 1125 (1993).

31R. de Gelder, R. Wehrens, and J. A. Hageman, J. Comput. Chem. 22, 273
(2001).

32A. R. Oganov and M. Valle, J. Chem. Phys. 130, 104504 (2009).

33Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma,
J. Phys.: Condens. Matter 27, 203203 (2015).

34P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
35J. A. Chisholm, S. Motherwell, and IUCr, J. Appl. Crystallogr. 38, 228

(2005).
36J. Behler, J. Chem. Phys. 134, 074106 (2011).
37A. P. Bartok, R. Kondor, and G. Csanyi, Phys. Rev. B 87, 184115 (2013).
38O. A. von Lilienfeld, Int. J. Quantum Chem. 113, 1676 (2013).
39P. Gasparotto and M. Ceriotti, J. Chem. Phys. 141, 174110 (2014).
40L. Yang, S. Dacek, and G. Ceder, Phys. Rev. B 90, 054102 (2014).
41H. W. Kuhn, Nav. Res. Logist. Q. 2, 83 (1955).
42J. M. Vásquez-Pérez, G. U. G. Martínez, A. M. Köster, and P. Calaminici,

J. Chem. Phys. 131, 124126 (2009).
43A. Sadeghi, S. A. Ghasemi, B. Schaefer, S. Mohr, M. A. Lill, and S.

Goedecker, J. Chem. Phys. 139, 184118 (2013).
44B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678

(2007).
45T. J. Lenosky, J. D. Kress, I. Kwon, A. F. Voter, B. Edwards, D. F. Richards,

S. Yang, and J. B. Adams, Phys. Rev. B 55, 1528 (1997).
46P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,

D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de
Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R.
Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S.
Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M.
Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

47M. Ceriotti, J. More, and D. E. Manolopoulos, Comput. Phys. Commun. 185,
1019 (2014).

48M. Amsler, S. Botti, M. A. L. Marques, T. J. Lenosky, and S. Goedecker,
Phys. Rev. B 92, 014101 (2015).

49P. M. Morse, Phys. Rev. 34, 57 (1929).
50D. W. Bassett and P. R. Webber, Surf. Sci. 70, 520 (1978).
51F. H. Allen, Acta Crystallogr., Sect. B 58, 380 (2002).
52See https://github.com/materials/mint for Mint (materials interface).
53G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
54P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
55G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
56S. A. Hayward, F. D. Morrison, S. A. T. Redfern, E. K. H. Salje, J. F. Scott,

K. S. Knight, S. Tarantino, A. M. Glazer, V. Shuvaeva, P. Daniel, M. Zhang,
and M. A. Carpenter, Phys. Rev. B 72, 054110 (2005).

57A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis (Taylor & Francis, 2014), Vol. 2.

58C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995).
59W. McCulloch and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).
60J. Behler, Int. J. Quantum Chem. 115, 1032 (2015).
61A. P. Bartók and Gábor Csányi, Int. J. Quant. Chem. 115, 1051–1057 (2015).
62M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld, J. Phys. Chem. Lett.

6(16), 3309–3313 (2015).

http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1063/1.1724816
http://dx.doi.org/10.1063/1.3512900
http://dx.doi.org/10.1016/j.cpc.2006.07.020
http://dx.doi.org/10.1016/j.cpc.2006.07.020
http://dx.doi.org/10.1088/0953-8984/23/5/053201
http://dx.doi.org/10.1103/PhysRevB.82.094116
http://dx.doi.org/10.1016/j.cpc.2012.05.008
http://dx.doi.org/10.1524/zkri.216.7.361.20362
http://dx.doi.org/10.1039/a901227c
http://dx.doi.org/10.1039/a901227c
http://dx.doi.org/10.1103/PhysRevLett.108.065501
http://dx.doi.org/10.1103/PhysRevLett.108.205505
http://dx.doi.org/10.1103/PhysRevLett.111.136101
http://dx.doi.org/10.1073/pnas.1119375109
http://dx.doi.org/10.1073/pnas.1119375109
http://dx.doi.org/10.1038/nchem.1925
http://dx.doi.org/10.1126/science.1244989
http://dx.doi.org/10.1016/j.cpc.2011.11.007
http://dx.doi.org/10.1107/S010876730302186X
http://dx.doi.org/10.1107/S010876730302186X
http://dx.doi.org/10.1107/S1600576713031014
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://arxiv.org/abs/1203.5146
http://dx.doi.org/10.1107/S1600576713031002
http://dx.doi.org/10.1002/(SICI)1096-987X(199706)18:8<1036::AID-JCC7>3.0.CO;2-U
http://dx.doi.org/10.1002/jcc.540141002
http://dx.doi.org/10.1002/jcc.540141002
http://dx.doi.org/10.1002/1096-987X(200102)22:3<273::AID-JCC1001>3.0.CO;2-0
http://dx.doi.org/10.1063/1.3079326
http://dx.doi.org/10.1088/0953-8984/27/20/203203
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1107/S0021889804027074
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1103/PhysRevB.87.184115
http://dx.doi.org/10.1002/qua.24375
http://dx.doi.org/10.1063/1.4900655
http://dx.doi.org/10.1103/PhysRevB.90.054102
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1063/1.3231134
http://dx.doi.org/10.1063/1.4828704
http://dx.doi.org/10.1021/jp070186p
http://dx.doi.org/10.1103/PhysRevB.55.1528
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1016/j.cpc.2013.10.027
http://dx.doi.org/10.1103/PhysRevB.92.014101
http://dx.doi.org/10.1103/PhysRev.34.57
http://dx.doi.org/10.1016/0039-6028(78)90429-6
http://dx.doi.org/10.1107/S0108768102003890
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
https://github.com/materials/mint
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.72.054110
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/bf02478259
http://dx.doi.org/10.1002/qua.24890
http://dx.doi.org/10.1002/qua.24927
http://dx.doi.org/10.1021/acs.jpclett.5b01456

