324 research outputs found

    Structure of a tetrameric MscL in an expanded intermediate state

    Get PDF
    The ability of cells to sense and respond to mechanical force underlies diverse processes such as touch and hearing in animals, gravitropism in plants, and bacterial osmoregulation. In bacteria, mechanosensation is mediated by the mechanosensitive channels of large (MscL), small (MscS), potassium-dependent (MscK) and mini (MscM) conductances. These channels act as 'emergency relief valves' protecting bacteria from lysis upon acute osmotic down-shock. Among them, MscL has been intensively studied since the original identification and characterization 15 years ago. MscL is reversibly and directly gated by changes in membrane tension. In the open state, MscL forms a non-selective 3 nS conductance channel which gates at tensions close to the lytic limit of the bacterial membrane. An earlier crystal structure at 3.5 Å resolution of a pentameric MscL from Mycobacterium tuberculosis represents a closed-state or non-conducting conformation. MscL has a complex gating behaviour; it exhibits several intermediates between the closed and open states, including one putative non-conductive expanded state and at least three sub-conducting states. Although our understanding of the closed and open states of MscL has been increasing, little is known about the structures of the intermediate states despite their importance in elucidating the complete gating process of MscL. Here we present the crystal structure of a carboxy-terminal truncation mutant (Delta95–120) of MscL from Staphylococcus aureus (SaMscL(CDelta26)) at 3.8 Å resolution. Notably, SaMscL(CDelta26) forms a tetrameric channel with both transmembrane helices tilted away from the membrane normal at angles close to that inferred for the open state, probably corresponding to a non-conductive but partially expanded intermediate state

    Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels

    Get PDF
    Drugs do not act solely by canonical ligand–receptor binding interactions. Amphiphilic drugs partition into membranes, thereby perturbing bulk lipid bilayer properties and possibly altering the function of membrane proteins. Distinguishing membrane perturbation from more direct protein–ligand interactions is an ongoing challenge in chemical biology. Herein, we present one strategy for doing so, using dimeric 6-bromo-2-mercaptotryptamine (BrMT) and synthetic analogues. BrMT is a chemically unstable marine snail toxin that has unique effects on voltage-gated K+ channel proteins, making it an attractive medicinal chemistry lead. BrMT is amphiphilic and perturbs lipid bilayers, raising the question of whether its action against K+ channels is merely a manifestation of membrane perturbation. To determine whether medicinal chemistry approaches to improve BrMT might be viable, we synthesized BrMT and 11 analogues and determined their activities in parallel assays measuring K+ channel activity and lipid bilayer properties. Structure–activity relationships were determined for modulation of the Kv1.4 channel, bilayer partitioning, and bilayer perturbation. Neither membrane partitioning nor bilayer perturbation correlates with K+ channel modulation. We conclude that BrMT’s membrane interactions are not critical for its inhibition of Kv1.4 activation. Further, we found that alkyl or ether linkages can replace the chemically labile disulfide bond in the BrMT pharmacophore, and we identified additional regions of the scaffold that are amenable to chemical modification. Our work demonstrates a strategy for determining if drugs act by specific interactions or bilayer-dependent mechanisms, and chemically stable modulators of Kv1 channels are reported

    Molecular Models of Voltage Sensing

    Get PDF

    Neutrino Interactions at Ultrahigh Energies

    Get PDF
    We report new calculations of the cross sections for deeply inelastic neutrino-nucleon scattering at neutrino energies between 10^{9}\ev and 10^{21}\ev. We compare with results in the literature and assess the reliability of our predictions. For completeness, we briefly review the cross sections for neutrino interactions with atomic electrons, emphasizing the role of the WW-boson resonance in νˉee\bar{\nu}_{e}e interactions for neutrino energies in the neighborhood of 6.3\pev. Adopting model predictions for extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray bursters, and the collapse of topological defects, we estimate event rates in large-volume water \v{C}erenkov detectors and large-area ground arrays.Comment: 32 pages, 11 figures, uses RevTeX and boxedep

    The RCK1 domain of the human BK_(Ca) channel transduces Ca^(2+) binding into structural rearrangements

    Get PDF
    Large-conductance voltage- and Ca^(2+)-activated K^+ (BK_(Ca)) channels play a fundamental role in cellular function by integrating information from their voltage and Ca2+ sensors to control membrane potential and Ca^(2+) homeostasis. The molecular mechanism of Ca^(2+)-dependent regulation of BKCa channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K^+ conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BK_(Ca) RCK1 domain adopts an α/β fold, binds Ca^(2+), and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca^(2+)-induced conformational changes in physiologically relevant [Ca^(2+)]. The neutralization of residues known to be involved in high-affinity Ca^(2+) sensing (D362 and D367) prevented Ca^(2+)-induced structural transitions in RCK1 but did not abolish Ca^(2+) binding. We provide evidence that the RCK1 domain is a high-affinity Ca^(2+) sensor that transduces Ca^(2+) binding into structural rearrangements, likely representing elementary steps in the Ca^(2+)-dependent activation of human BK_(Ca) channels

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Metal-driven Operation of the Human Large-conductance Voltage- and Ca^(2+)-dependent Potassium Channel (BK) Gating Ring Apparatus

    Get PDF
    Large-conductance voltage- and Ca^(2+)-dependent K^+ (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca^(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the “gating ring”), which confers sensitivity to intracellular Ca^(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca^(2+)- and Mg^(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba^(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca^(2+)-binding site (the “calcium bowl”) reduced the Ca^(2+) and abolished the Mg^(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca^(2+)-binding site and that Mg^(2+) can bind to the calcium bowl with less affinity than Ca^(2+). Dynamic light scattering analysis revealed a reversible Ca^(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
    corecore