342 research outputs found

    The accelerated path of ceritinib: Translating pre-clinical development into clinical efficacy

    Get PDF
    Abstract The discovery of anaplastic lymphoma kinase ( ALK )-rearranged non–small-cell lung cancer (NSCLC) in 2007 led to the development and subsequent approval of the ALK inhibitor crizotinib in 2011. However, despite its clinical efficacy, resistance to crizotinib invariably develops. There is now a next generation of ALK inhibitors, including two that have been approved—ceritinib and alectinib—and others that are in development—brigatinib, lorlatinib and X-396. Ceritinib and the other next-generation ALK inhibitors are more potent than crizotinib and can overcome tumor cell resistance mechanisms. Ceritinib gained US Food and Drug Administration approval in 2014 following accelerated review for the treatment of patients with ALK -positive ( ALK +) metastatic NSCLC who have progressed on or are intolerant to crizotinib. In pre-clinical studies, it demonstrated more potent inhibition of ALK than crizotinib in enzymatic assays, more durable responses in xenograft models and the ability to potently overcome crizotinib resistance mutations in vitro (including the gatekeeper mutation). There is also evidence for ceritinib penetration across the blood-brain barrier. In clinical trials, ceritinib has demonstrated durable responses and progression-free survival in ALK-inhibitor–pre-treated and –naive NSCLC patients, including high overall and intracranial response rates in those with central nervous system metastases. Selective gastrointestinal toxicity of ceritinib, such as diarrhea, nausea and vomiting is generally manageable with prophylactic medication and prompt dose reduction or interruption. Future progress in treating ALK + NSCLC will focus on determining the optimal sequencing of therapies and strategies to overcome acquired resistance, an ongoing challenge in treating ALK -mutation–driven tumors

    Blood pressure estimation from photoplethysmogram and electrocardiogram signals using machine learning

    Get PDF
    Blood pressure measurement is a significant part of preventive healthcare and has been widely used in clinical risk and disease management. However, conventional measurement does not provide continuous monitoring and sometimes is inconvenient with a cuff. In addition to the traditional cuff-based blood pressure measurement methods, some researchers have developed various cuff-less and noninvasive blood pressure monitoring methods based on Pulse Transit Time (PTT). Some emerging methods have employed features of either photoplethysmogram (PPG) or electrocardiogram (ECG) signals, although no studies to our knowledge have employed the combined features from both PPG and ECG signals. Therefore this study aims to investigate the performance of a predictive, machine learning blood pressure monitoring system using both PPG and ECG signals. It validates that the employment of the combination of PPG and ECG signals has improved the accuracy of the blood pressure estimation, compared with previously reported results based on PPG signal only. © 2018 Institution of Engineering and Technology. All rights reserved

    Influence of poly(ethelene glycol) on the phase behaviour of sodium dodecyl sulfate/1-pentanol/water systems.

    Get PDF
    The phase behavior of SDS/1-pentanol/water system in the presence of poly(ethylene glycol), PEG, was determined at 27.0 ± 0.5°C. The addition of PEGs, namely, mPEG2000, mPEG8000 and PEG5000, changes both the isotropic and liquid crystalline phases indicating the presence of surfactant-polymer interaction in the system, respectively. The increase of polymer chain length and content in the system decreases both the isotropic and liquid crystalline regions. It is believed that the absence of methyl group in the mPEG goes through different surfactant-polymer conformation as the change in isotropic region is different between mPEG(2000 and 8000) and PEG5000. The presence of polymers (mPEG2000, mPEG8000, and PEG5000) in the isotropic solution along 90:10 of SDS:1-pentanol tie-line changes the packing and orientation of micelle

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Metabolic Syndrome Predicts New Onset of Chronic Kidney Disease in 5,829 Patients With Type 2 Diabetes: A 5-year prospective analysis of the Hong Kong Diabetes Registry

    Get PDF
    OBJECTIVE—Type 2 diabetes is the leading cause of end-stage renal disease worldwide. Aside from hyperglycemia and hypertension, other metabolic factors may determine renal outcome. We examined risk associations of metabolic syndrome with new onset of chronic kidney disease (CKD) in 5,829 Chinese patients with type 2 diabetes enrolled between 1995 and 2005

    Comparing very low birth weight versus very low gestation cohort methods for outcome analysis of high risk preterm infants

    Get PDF
    Background: Compared to very low gestational age (\u3c32 weeks, VLGA) cohorts, very low birth weight (\u3c1500 g; VLBW) cohorts are more prone to selection bias toward small-for-gestational age (SGA) infants, which may impact upon the validity of data for benchmarking purposes. Method: Data from all VLGA or VLBW infants admitted in the 3 Networks between 2008 and 2011 were used. Two-thirds of each network cohort was randomly selected to develop prediction models for mortality and composite adverse outcome (CAO: mortality or cerebral injuries, chronic lung disease, severe retinopathy or necrotizing enterocolitis) and the remaining for internal validation. Areas under the ROC curves (AUC) of the models were compared. Results: VLBW cohort (24,335 infants) had twice more SGA infants (20.4% vs. 9.3%) than the VLGA cohort (29,180 infants) and had a higher rate of CAO (36.5% vs. 32.6%). The two models had equal prediction power for mortality and CAO (AUC 0.83), and similarly for all other cross-cohort validations (AUC 0.81-0.85). Neither model performed well for the extremes of birth weight for gestation (\u3c1500 g and ≥32 weeks, AUC 0.50-0.65; ≥1500 g and \u3c32 weeks, AUC 0.60-0.62). Conclusion: There was no difference in prediction power for adverse outcome between cohorting VLGA or VLBW despite substantial bias in SGA population. Either cohorting practises are suitable for international benchmarking

    The amyloid precursor protein controls PIKfyve function

    Get PDF
    While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease

    Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Get PDF
    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed
    corecore