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Abstract 

Quasi-equilibrium excitation dependent optical probe spectra of II-VI semi- 

conductor quantum wells at room temperature are investigated within the 

framework of multi-band semioonductor Bloch equations. The calculations 

--- 

I 

include correlation effects beyond the Hdree-Fock level which describe de- 

phasing, interband Coulomb correlations and band-gap renormalbation in 

second Born approximation. In addition to the carrier-Coulbmb interaction, 
” 

the influence of carrier-phonon scattering and inhomogeneous broadening is 

considered. The explicit calculation of single particle properties like band 

structure and dipole matrix elements using k p theory makes it possible to 
c 

investigate various II-VI material combinations. Numerical results are pre- 

sented for CdZnSe/ZnSe and CdZnSe/MgZnSSe semiconductor quantum-well 

systems. 
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I. INTRODUCTION 

Wide band gap semiconductor materials, in particular 11-VI compounds, are promising 

candidates for optical device application in the blue-green wavelength region. Especially 

for device optimization, a detailed understanding of the electronic interaction processes 

and their influence on optical gain spectra is desirable. Several recently investigated 11-VI 

heterostructures are composed of quantum layers with Zn,Cdl-,Se active material within 

ZnSe barriers [2-51. Hence, the theoretical description of the optical properties of 11-VI 

heterostructur& requires not only the inclusion of the relevant many-body processes in a 

highly excited semiconductor but also the particular composition and geometry dependend 

band structure properties. 

In this paper we theordtically investigate the optical probe spectra of 11-VI heterostruc- 

tures. Concentrating on room temperature properties of structures with weak interface 

roughness, the optical gain can be assumed to result from electrons which, after their inco- 

herent injection, have relaxed into the available electronic states at the bottom of the band 

whereas higher bound states, such as biexcitons [6], are of minor importance. In our model, 

'4- 2- 

the interaction of the light field with the inverted material is treated semiclassically by cal- 

culating the absorption in the framework of the multi-band semiconductor Bloch equations. 

The observable in a typical experiment, where the probe light propagates in the plane of the 
' I  

quantum-well heterostructure, is the absorption coefficient, 

where n b  the refractive index, k ( w )  = J d t  est E( t )  is the Fourier transform of the applied 

probe pulse E ( t )  and p ( w )  is the corresponding Fourier transform of the induced polarization 

density P(t).  Note that for a weak probe field the induced polarization p ( w )  is directly 

proportional to E ( w )  so that a( 

When light propagation in the qu 

field overlapps with the quantum well(s) and the barrier layers. To account for the resulting 
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reduced effective absorption or gain, we have introduced in Eq. (1) the confinement factor 

r = o . o q n m .  

11. EQUATIONS OF MOTION 

In this section, we calculate the polarization density P(t)  from a microsocopic theory 

including band-structure effects as well as many body interactions. We expand the polar- 

ization density in a quantum-well Bloch basis, 

where k is the in-plane carrier momentum, u = A, n contains the band index X = e, h and 

the sub-band index n and A is the active area of the quantum well. In Eq. (21, we consider 

all optically allowed single valence band to conduction band (1.’) + {v)) transitions with 

the interband dipole matrix elements fit. The polarizations €or the different bands obey 

9 

the multi-band%efniconductor Bloch equations [7], 

where Pzyl(t) is the interband polarization between the bands u = e,n and J = h,n and 

f?, f:;” are the carrier distribution functions for electrons and holes in the sub-band n, 

respectively. For a weak probe beam, the polarization P:V‘(t) remains linear with respect to 

the probe field E(t)  and the probe field induced changes of the carrier occupation fka,n can be 

neglected. Hencd the probe spectrum reflects the excitation of the system which is described 

by quasi-equilibrium Fermi-Dirac distribution functions fpn with fixed carrier temperature 

(T=300K) and a chemical potential determined by the total density in the sample. 

In Eq. (a), the many-body effects can be devided into Hartee-Fock (mean field) and 

correlation contributions. The mean field corrections lead to renormalized single-particle 

energies, 
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and to a renormalized Rabi energy; 

(5) n:’’(t) = p:v‘E(t) + I/ik-ql pg”.”’(i), 
q f k  

with the free-carrier energies Ey(k) and the Rabi energy of the probe field pT‘E.  The 

particular properties of the heterostructure, such as quantum-well thickness and material 

composition, determine the dipole matrix transition elements py’ as well as the bandstruc- 

ture E,(k). In our approach, these quantities are calculated from a diagonalization of the 

Luttinger Hamiltonian using a 4x4 k - p-theory within the envelope approximation [7]. 

The quantum-well matrix elements of the bare Coulomb potential, which couple various 

carrier states, have the general form 

Because of th%band mixing, the confinement functions z)  of the band vi depend on 

the in-plane carrier momentum ki. This band +ng is additionally complicated by the fact 

that the influence of barrier states on the top valence band states cannot be neglected. The 

dependence of the quantum-well Coulomb matrix elements on the band indices vi and the 

correqonding in-plane carrier momenta Ici considerably complicates the coupling of various 

bands in Eqs. (3)-(5) as well as the evaluation of screening. It would be desirable to use 

Eq. (6) without further approximations within the many-body problem. Then one would 

take into accomt that the Coulomb interaction explicitly depends on the momenta of the 

contributing carriers Ici and not only on the transition momentum q. In this paper, we study 

the influence of band mixing under the assumption that the various envelope functions 

,fvz(ki,z) in Eq. (6) are approximated by an effective (momentum independent) function 

,fo ( 2 ) .  The resulting confinement Coulomb potential 

will be used in Eqs. (4), (5) and below. 
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The mean-field contributions contain the lowest-order Coulomb effects which lead to  

excitonic resonances and a low-density band-gap renormalization. However, under high 

excitation conditions, correlation contributions [8-121 result in strong modifications of the 

Hartree-Fock terms. The correlation terms can be divided into diagonal (d) and non-diagonal 

(nd) contributions: 

d t  
= - [l?i(k) +l?y(k)] Pvzvl(k) 

+ c [G&q) + G ( k >  4)) P”*% + SI- 

The real part of r” describes the dephasing of the polarization due to scattering of carriers in 

the bands u, The diagonal contribution, Re r5, leads to a momentum-dependent polarization 

decay rate whereas the non-diagonal contribution, Re l?Ed, mixes the polarizations of various 
4 

k-states. Without higher-order polarization terms [9,12], which can 

regime where a weak probe field is treated, we find Re I’z(k) = Ern(k) 

be neglected in 

+ CL(k) where 

the 

determines the redistribution of the carrier occupation probability f”. Hence the diagonal 

damping rate contains the s u m  of in and out-scattering rates in the carrier dynamics. For the 

considered quasi-equilibrium situation of the carrier system, the detailed balance condition 

leads to -$fv(k)lasrr=O whereas in and out-scattering results in a large damping rate Re r d  

which corresponds to a decay time on the order of 100 fs. In Eq. (8), this diagonal damping 

rate is compensated to a large extend by the non-diagonal damping rate Re rnd .  In Ref. [lo] 

it has been shown, that this compensation has to be considered in order to obtain the correct 

carrier generation rate for intense optical interband excitation. Also the excitonic damping 

[14] and the lineshape of the gain Ill] can be properly described only by including both 

diagonal and non-diagonal damping. 

I 

On the other hand, the imaginary part of I?” combines with the mean-field contributions, 

described by Eqs. (4) and (5) ,  by adding screening contributions to the renormalized carrier 

energy and and the renormalized Rabi energy. Note, however, that in general the correlation 
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contributions cannot be written as corrections to single particle properties. 

In the following we consider the influence of carrier-carrier Coulomb scattering as well as 

carrier-phonon scattering. In second Born approximation, where terms up to the quadratic 

order in the screened Coulomb potential are included, the carrier-carrier scattering leads to 

the diagonal contribution 

whereas the non-diagonal scattering rate follows from 

In the subband matrix element of the screened 2d-Coulomb potential, Wq = Vq/eq, the 

infiuence of excitation-induced screening is described by the dielectric function cS which will 

be calculated using the static Lindhard formula f13]. Screening contributions of the crystal 

.- - 

lattice (including phonons) and nonresonant transitions are included through a background 

dielectric constant f b  in Eq. (7). With Eb = QJ background contributions of phonons are 

taken ibto account. However, as part of the phonons and their interaction with the carriers 

will be treated explicitly, this dielectric constant has to be reduced [13]. Hence, when we 

consider correlation contributions due to carrier-phonon interaction, we use a background 

dielectric constant ~b = E ,  which does not include the influence of phonons. In this limiting 
a 

case, the background phonon screening is slightly underestimated. 

For the electron-phonon scattering, the diagonal rates in Eq. (8) are given by 

and the non-diagonal rates are 
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where fiWL0 is the energy of the LO-phonons and 7: is the Frohlich interaction matrix 

element of 3d LO-phonons and confined electrons with in-plane momentum q, 

For the distribution function of phonons, nm, we use a Bose-Einstein function containing 

the lattice temperature. 

The derivation of the scattering rates requires many body techniques such as Green's 

functions or projection formalism in density matrix theory. Here, within the assumption that 

gain spectra at room temperature can be described by using one-particle correlations, higher 

order correlation functions have been factorized. In the Green's functions technique, the 

random-phaseepproximation (RPA) as well as the first Coulomb vertex contribution have to 

be considered to obtain all scattering contributions in Eqs. (10) and (11) which are quadratic 

in the screened Coulomb potential W. Correlation contributions have a complicated time 

dependence, which includes memory effects. In Eqs. (10) - (13), this time-dependence has 

been approximated within an adiabatic treatment that leads to a generalized Heitler-Zeta 

function, 

3 

t 

g ( 4  = *- i 

* 

This Heitler-Zeta function includes the effective quasi-particle broadening y which will be 

treated as a small constant. While 7 is a property of correlated carriers, we do not include 

any phenomenolagical polarization decay time. 

At the end of this section, we outline some properties of the discussed theory for a 4 nm 

CdZnSe quantum well (see next section). The dependence of our results on the effective 

quasi-particle broadening y is shown in Fig. 1 where, for simplicity, only a single valence 

band has been considered. While the diagonal scattering rate is reduced with increasing 
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7, the compensation of diagonal and non-diagonal rates results in a spectrum which is 

basically independent on y. In Fig. 2 we study the influence of various approximations 

for the polarization dephasing on the absorption spectrum. In the simplest approximation, 

correlation contributions in Eq. (2) are included phenomenologically. Polarization dephasing, 

which is described by the real part of Eq. (8), has often been approximated by a constant T2 

time. Screening corrections to the Hartree-Fock terms, Eqs. (4) and (5), which follow from 

the imaginary part of Eq. (8), have been approximated by replacing V by W and adding 

the Coulomb-hole term in Bq. (4) [13]. The resulting absorption spectra are shown in 

Fig. 2a. With increasing carrier density, we obtain a strong artificial red shift of the exciton 

resonance (at moderate densities) and of the gain peak (at high densities). As a next step, 

we consider correlation contributions due to carrier-carrier scattering. In Fig. 2b, only the 

complex diagonal rate r$f(k) has been used together with Eqs. (4)-(8), whereas in Fig. 2c 

also the non-diagonal rate I'ip)(k,q) has been included. When only the diagonal rate is 

considered, de&Fing is clearly overestimated which can be seen from the strong broadening 

of the exciton resonances. Only if both diagonal and non-diagonal rates are included, the 

exciton broadening is reduced to reasonable values and, in agreement -with experimental 
rl 

observations, almost no shift of the exciton resonance is obtained with increasing carrier 

density. In Figs. 2d and e, we directly compare the approximations of Figs. 2a-c for carrier 

densities leading to gain. In the phenomenological model (dotted line) as well as in the pure 

dephasing limit (dashed line), the bandgap renormalization is drastically overestimated, 

,I 

the lineshape of.the gain is modified and unphysical absorption below the renormalized 

bandedge is obtained in comparison to the full model (solid line). Especially the absorption 

energetically below the gain region, which occurs in simplified gain calculations, is a signature 

of overestimated dephasing and incorrect lineshape. The resulting strong broadening of 

carrier lineshape functions leads to an unphysical admixture of non-inverted states high 

above the band edge. 

In conclusion, the large red shift of the exciton at low carrier densities, the overestimated 

band-gap shift at higher densities as well as the large damping are artifacts of simpler 
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models which are in clear contradiction to experimental results. Hence, a pure dephasing 

approximation is not appropriate and only the full model can reproduce the experimental 

results. 

For a realistic description of quantum wells on the basis of II-VI compounds, additional 

excitation independent inhomogeneous broadening has to be considered in addition to the 

excitation dependent carrier-carrier and carrier-phonon interaction. In particular, small 

spatial variations of the concentration of the quantum-well and barrier materials as well as 

roughness of the welllbarrier interfaces give rise to inhomogenous broadening. Correspond- 

ingly the calculated results are more realistic when the homogeneously broadened spectrum 

a h ( u )  is convoluted with a Gaussian distribution G(w) of given spectral width according 

- 

to 

Figure 3 show%the influence of increasing additional inhomogenous broadening on the T E  

spectrum of a 4 nm CdZnSe quantum well (see next section). Note that the influence 

of inhomogeneous broadening is stronger for smaller carrier densities where the spectrum 

contains sharp features. With increasing broadening, the lineshape is modified and the gain 

maxima can shift several meV. In the following results, we have included an inhomogenous 

broadening of 10 meV. 
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111. SPECTRA OF II-VI QUANTUM WELLS 

The microscopic model discussed in the previous section will be used to compute the 

density-dependent absorption and gain spectra for CdZnSe quantum wells between 15nm 

ZnSe barriers and ZnSSe cladding layers (25% Cd and 6% S). Two samples with a quantum- 

well width w=4 nm (QW1) and w=7 nm (QW2) are compared. 

Using the envelope approximation method 171, the energy gaps and the strain induced 

shifts for the heavy and light hole states are calculated. The conduction bands are always 
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assumed to be parabolic. Neglecting the split off band, the hole states are coupled via a 

4 x 4 Luttinger Hamiltonian. The diagonalization of this system leads to the valence bands 

E,r(k) and the dipol matrix elements p:”’. All those bands are considered where the carriers 

are confined in the quantum well for at least small wavevectors k. For the 4 nm and 7 

nm quantum wells, the calculated band structure is shown in Fig. 4. In the 4 nm (7 nm) 

quantum well, one (two) conductions band and three (five) valence bands are confined. The 

compressive strain of the CdZnSe wells between the ZnSe barriers produces a heavy-hole 

light-hole splitting. For the 7 nm quantum well, the top three valence bands are heavy-hole 

like close to the band edge so that their coupling to the TM-mode is weak. Hence the 

exciton and gain corresponding to these transitions is small. The main contribution to the 

TM-mode follows from tansitions between the fourth and fifth valence band and the first 

conduction band. 
% 

The T E  and TM-spectra of the 4 nm and 7 nm quantum- wells are plotted in Figs. 5 

and 6, respec$vely. The shown carrier densities cover the region from no inversion between 

any bands to inversion between most of the confined bands for small wavevectors k [16]. 

The low-density TEspectra of the 4 nm quantum well (left part in Fig. 5) show two strong 

excitonic absorption lines corresponding to the 1-1 and 2-2 transition. Here transitions are 

labeled i-j with i (j) refering to the conduction (valence) band involved. For our system, the 
I ,  

second TEabsorption (2-2) line appears at the same spectral position as the TM-absorption 

(1-4) line; the differences of the band gaps for these transitions is less than 2meV. These 

excitonic absorption lines stay at their spectral position when the carrier density increases; 

after exciton bleaching the transition develops gain. For the highest carrier density, the T E  

spectra of the 4 nm quantum well exhibit a shoulder due to inversion of the 2-2 transition. In 

addition, the left part of Fig. 5 shows that the absorption above the renormalized band edge 

does not decrease when the carrier density increases; the high-energy part of the spectra for 

large carrier densities is only shifted as a consequence of bandgap renormalization due to 

Coulomb interaction. 

If the quantum well is wider, more bands are confined. This is illustrated in the right 
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part of Figs. 5 and 6. Due to the second conduction band in QW2, we obtain an additional 

excitonic transition in the TE-spectra while the TM-absorption remains similar to that of 

QWl. As the carrier density is distributed over more bands in QW2, the inversion becomes 

smaller and the gain is reduced. In addition, the polarization decay is increased for QW2 

at low plasma densities which leads to a broader excitonic absorption line. 

The band offset, i.e., the splitting of the confinement energy between the conduction and 

the valence band, cannot be determined unambiguously from experiments. In the previous 

calculations, a band offset of 60% for the conduction band has been assumed. The influence 

of band offset changes on our results is studied in Figs. 7 and 8 for the T E  and TM-spectra, 

respectively. For a conduction band offset between 30% and 60%, a single sub-band appears 

in the finite-hight quantum well confinement potential of the electrons using the above 

discussed material composition and 4 nm well width (QW1). However, the confinement 

potential of holes leads to four sub-bands within the quantum well for 30% and 40% offset 

and three subr&ands ?* when 50% and 60% offset are considered. The TEspectra for various 

band-offset values are shown in Fig. 7. The lineshape of the spectra at high densities is 

almost independent of the band offset; only the magnitude of the gain is slightly changed. 

9 

Also the low-density spectra are similar, only the weak excitonic resonance of the fourth 

hole subband is missing for a band offset 2 50%. With increasing band offset, the envelope 

function of the light hole becomes less confined in the quantuk well which leads to an 

reduced effective TM-dipol coupling with the conduction band. For that reason both the 

TM-absorption for low plasma densities and TM-gain at higher densities are reduced with 

increasing band offset as shown in Fig. 8. 

I 

As another application of our theory, we study the influence of compressive versus tensile 

strain on the quantum-well spectra of 11-VI compounds. We investigate a 4 nm Zno.aC&.zSe 

quantum well with a lattice constant of 5.75 8, between ZnMgSSe barriers having a lattice 

constant of either 5.65 A (QW3) or 5.83 A (QW4) [17]. The corresponding band structure 

is shown in Fig. 9. In QW3, the first three valence bands are heavy-hole like at the zone 

center while in QW4 the tensile strain causes a top valence band with light-hole character. 
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Therefore, the TEgain strongly exceeds the TM-gain €or compressive strain whereas for 

tensile strain the TM-gain is dominant (Fig. 10). The carrier density dependence of the 

TEspectrum for QW3 is shown in Fig. 11. At intermediate densities, a situation can be 

realized where a small gain exists while the excitonic enhancement is still present. A similar 

situation has recently been observed in ZnCdSe/ZnSSe/ZnMgSSe quantum wells [18]. 

W .  CONCLUSION 

In summary, the gain spectra of II-VI quantum-well materials have been investigated 

within a microscopic plasma theory which is based on kinetic equations for an interacting 

electron-hole system in a multi-band semiconductor. These equations include many-body 

effects such as intraband astwell as interband Coulomb correlations leading to carrier scatter- 

ing and excitonic transitions. In addition, the influence of LO-phonons has been considered. 

The single-particle energies and the dipole coupling have computed using Luttinger-Kohn 

theory in envelope function approximation. 
‘*c- -_ 

The model has been used for calculating th6 excitation density dependent absorption 

and gain spectra of several different examples. The possibility to optimize the gain spectra 

in terms of well-width and composition has been studied for II-VI compounds. 
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FIG. 1. Complex scattering rat 

FIGURES 

I'~'cc'(k) for electrons (e) and holes (h) and absorption spec- 

trum for a tweband model with carrier density 2 x 10l2 cm-2 and various quasi-particle broaden- 

ing Y- 

FIG. 2. Influence of the polarization-dephasing model on the linear absorption spectrum of 

a 4 rn CdZnSe quantum well. Within a phenomenological model (a), a constant polarization 

decay rate T2=100 fs and screened Hartree-Fock contributions have been considered. Using a 

microscopic model for correlation contributions due to carrier-canier scattering, we compare the 

diagonal dephasing (b) with diagonal and non-diagonal dephasing (c). The carrier densities are 

0.1, 0.5, I, 2, 4 x1OI2 (from top to bottom). In (d) and (e) we directly compare the 

phenomenological model (d&ted line) with the diagonal dephasing (dashed line) and diagonal + 
non-diagonal dephasing (solid line) for a fixed carrier density. 

FIG. 3. A+rption spectrum of a 4 nm quantum well for a carrier density 2 x 10l2 cm-2 and 

various inhomogeneous broadenhg. 
P 

FIG. 4. Energy bands for a 4 nm and 7 nm CdZnSe/ZnSe quantum well. The offset energy El 

is 2.52 eV. 

I 

FIG. 5. Comparison of the TEspectra of a CdZnSe/ZnSe quantum well with 4 nm well width 

(QW1) and 7 nm well width (QW2). The carrier densities are 0.5, 1, 2, 3, 4, 5, 6, 7, 8 x 10l2 cmm2 

(from top to botiom). An additional inhomogenous broadening of 10 meV is taken into account. 

The bottom figures show the same on a larger scale. 

FIG. 6. Same as Fig. 5 for the TM-spectra. 

FIG. 7. TE-spectra for QWl where different band offsets are assumed. The densities are similar 

as in Fig.(G). For 30% or 40% conduction-band offset, four valence bands are confined in the well 

and three valence bands for higher offsets. 
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FIG. 8. Same as Fig. 7 for the TM-spectra. By increasing the conduction-band offset, i.e., 

reducing the potential well for the holes, the light hole becomes less confined and therefore the 

TM-coupling of the conduction bands with the confined valence bands decreases. 

FIG. 9. Energy bands for a 4 nm CdZnSe/ZnMgSSe quantum well with compressive (QW3) 

and tensile (QW4) strain. The offset energy E2 is 2.68 eV. 

FIG. 10. T E  and TM-spectra for a 4 nm CdZnSe/ZnMgSSe quantum well with compressive 

The bottom figures show the (QW3) and tensile (QW4) strain at carrier density 6 ~10'~ 

same on a larger scale. 

FIG. 11, TEspectra for a 4 nm CdZnSe/ZnMgSSe quantum well with compressive strain 

(from top to bottom). (QW3) for carrier densities,l.5, 1.8, 2.0, 2.2, 2.5 and 4.0 x10l2 

The bottom figure shows the same on a larger scale. 
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