1,433 research outputs found

    Excitation and Imaging of Resonant Optical Modes of Au Triangular Nano-Antennas Using Cathodoluminescence Spectroscopy

    Full text link
    Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and very small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations. This should provide further insights into better understanding of optical antennas for various applications.Comment: To be published in JVST B (accepted, Sep 2010) (15 pages, 6 figures, originally presented at EIPBN 2010

    Second-generation PLINK: rising to the challenge of larger and richer datasets

    Get PDF
    PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.Comment: 2 figures, 1 additional fil

    Stakeholder preferences for attributes of digital health technologies to consider in health service funding

    Get PDF
    Objectives: Health service providers are currently making decisions on the public funding of digital health technologies (DHTs) for managing chronic diseases with limited understanding of stakeholder preferences for DHT attributes. This study aims to understand the community, patient/carer, and health professionals' preferences to help inform a prioritized list of evaluation criteria. Methods: An online best-worst scaling survey was conducted in Australia, New Zealand, Canada, and the United Kingdom to ascertain the relative importance of twenty-four DHT attributes among stakeholder groups using an efficient incomplete block design. The attributes were identified from a systematic review of DHT evaluation frameworks for consideration in a health technology assessment. Results were analyzed with multinomial models by stakeholder group and latent class. Results: A total of 1,251 participants completed the survey (576 general community members, 543 patients/carers, and 132 health professionals). Twelve attributes achieved a preference score above 50 percent in the stakeholder group model, predominantly related to safety but also covering technical features, effectiveness, ethics, and economics. Results from the latent class model supported this prioritization. Overall, connectedness with the patient's healthcare team seemed the most important; with Helps health professionals respond quickly when changes in patient care are needed as the most highly prioritized of all attributes. Conclusions: It is proposed that these prioritized twelve attributes be considered in all evaluations of DHTs that manage chronic disease, supplemented with a limited number of attributes that reflect the specific perspective of funders, such as equity of access, cost, and system-level implementation considerations

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    Re-examining the effects of verbal instructional type on early stage motor learning

    Get PDF
    The present study investigated the differential effects of analogy and explicit instructions on early stage motor learning and movement in a modified high jump task. Participants were randomly assigned to one of three experimental conditions: analogy, explicit light (reduced informational load), or traditional explicit (large informational load). During the two-day learning phase, participants learned a novel high jump technique based on the ‘scissors’ style using the instructions for their respective conditions. For the single-day testing phase, participants completed both a retention test and task-relevant pressure test, the latter of which featured a rising high-jump-bar pressure manipulation. Although analogy learners demonstrated slightly more efficient technique and reported fewer technical rules on average, the differences between the conditions were not statistically significant. There were, however, significant differences in joint variability with respect to instructional type, as variability was lowest for the analogy condition during both the learning and testing phases, and as a function of block, as joint variability decreased for all conditions during the learning phase. Findings suggest that reducing the informational volume of explicit instructions may mitigate the deleterious effects on performance previously associated with explicit learning in the literature

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60_{60} fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low temperature ordered (2×2)(2 \times 2) state, and a high temperature (1×1)(1 \times 1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces.Comment: 4 pages, 2 figure

    The REFOLD database: a tool for the optimization of protein expression and refolding

    Get PDF
    A large proportion of proteins expressed in Escherichia coli form inclusion bodies and thus require renaturation to attain a functional conformation for analysis. In this process, identifying and optimizing the refolding conditions and methodology is often rate limiting. In order to address this problem, we have developed REFOLD, a web-accessible relational database containing the published methods employed in the refolding of recombinant proteins. Currently, REFOLD contains >300 entries, which are heavily annotated such that the database can be searched via multiple parameters. We anticipate that REFOLD will continue to grow and eventually become a powerful tool for the optimization of protein renaturation. REFOLD is freely available at
    • …
    corecore