15 research outputs found

    A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water

    Get PDF
    Access to safe drinking water is a human right, crucial to combat inequalities, reduce poverty and allow sustainable development. In many areas of the world, however, this right is not guaranteed, in part because of the lack of easily deployable diagnostic tools. Low-cost and simple methods to test water supplies onsite can protect vulnerable communities from the impact of contaminants in drinking water. Ideally such devices would also be easy to dispose of so as to leave no trace, or have a detrimental effect on the environment. To this aim, we here report the first paper microbial fuel cell (pMFC) fabricated by screen-printing biodegradable carbon-based electrodes onto a single sheet of paper, and demonstrate its use as a shock sensor for bioactive compounds (e.g. formaldehyde) in water. We also show a simple route to enhance the sensor performance by folding back-to-back two pMFCs electrically connected in parallel. This promising proof of concept work can lead to a revolutionizing way of testing water at point of use, which is not only green, easy-to-operate and rapid, but is also affordable to all

    Towards effective small scale microbial fuel cells for energy generation from urine

    Get PDF
    © 2016 The Authors. Published by Elsevier Ltd. To resolve an increasing global demand in energy, a source of sustainable and environmentally friendly energy is needed. Microbial fuel cells (MFC) hold great potential as a sustainable and green bioenergy conversion technology that uses waste as the feedstock. This work pursues the development of an effective small-scale MFC for energy generation from urine. An innovative air-cathode miniature MFC was developed, and the effect of electrode length was investigated. Two different biomass derived catalysts were also studied. Doubling the electrode length resulted in the power density increasing by one order of magnitude (from 0.053 to 0.580 W m-3). When three devices were electrically connected in parallel, the power output was over 10 times higher compared to individual units. The use of biomass-derived oxygen reduction reaction catalysts at the cathode increased the power density generated by the MFC up to 1.95 W m-3, thus demonstrating the value of sustainable catalysts for cathodic reactions in MFCs

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    Emerging Techniques and Materials for Water Pollutants Detection

    No full text
    Rapid industrialization and population boom have led to deterioration of water quality, rising health issues and environmental damage, which made it imperative to monitor and regulate the water pollutants. Earlier, water samples were monitored using grab sampling method and then analysis was performed in the laboratory. This process is arduous and time consuming; also, there are poor chances of detecting a periodic pollution. For a proactive response sensor technology is popular these days for pollutant monitoring. A variety of sensing techniques and materials are available. But recently nanomaterials have absorbed attention for fabricating sensors owing to their high surface to volume ratio, ease of functionalization which enable them to have high specificity and sensitivity. This chapter intends to review the emerging materials used for making water pollutant sensors and gives an insight into the emerging techniques like microfluidic sensors, biosensors, wireless sensor network and smart sensors
    corecore