316 research outputs found

    Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator

    Full text link
    The European Proximity Operation Simulator (EPOS) of the DLR-German Aerospace Center is a robotics-based simulator that aims at validating and verifying a satellite docking phase. The generic concept features a robotics tracking system working in closed loop with a force/torque feedback signal. Inherent delays in the tracking system combined with typical high stiffness at contact challenge the stability of the closed-loop system. The proposed concept of operations is hybrid: the feedback signal is a superposition of a measured value and of a virtual value that can be tuned in order to guarantee a desired behavior. This paper is concerned with an analytical study of the system's closed-loop stability, and with an experimental validation of the hybrid concept of operations in one dimension (1D). The robotics simulator is modeled as a second-order loop-delay system and closed-form expressions for the critical delay and associated frequency are derived as a function of the satellites' mass and the contact dynamics stiffness and damping parameters. A numerical illustration sheds light on the impact of the parameters on the stability regions. A first-order Pade approximation provides additional means of stability investigation. Experiments were performed and tests results are described for varying values of the mass and the damping coefficients. The empirical determination of instability is based on the coefficient of restitution and on the observed energy. There is a very good agreement between the critical damping values predicted by the analysis and observed during the tests...Comment: 16 page

    Functional Maps Representation on Product Manifolds

    Get PDF
    We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace--Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.Comment: Accepted to Computer Graphics Foru

    Direct perturbation theory on the shift of Electron Spin Resonance

    Full text link
    We formulate a direct and systematic perturbation theory on the shift of the main paramagnetic peak in Electron Spin Resonance, and derive a general expression up to second order. It is applied to one-dimensional XXZ and transverse Ising models in the high field limit, to obtain explicit results including the polarization dependence for arbitrary temperature.Comment: 5 pages (no figures) in REVTE

    Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    Get PDF
    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60-220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to similar to 250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of similar to 110 km for P. maculatus and similar to 190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations

    Preface

    Full text link
    No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38319/1/1687_ftp.pd

    Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways

    Get PDF
    Migration and proliferation of smooth muscle cells are key to a number of physiological and pathological processes, including wound healing and the narrowing of the vessel wall.Previous work has shown links between inflammatory stimuli and vascular smooth muscle cell proliferation and migration through mitogen activated protein kinase (MAPK) activation, though the molecular mechanisms of this process are poorly understood. Here we report that tribbles-1, a recently described modulator of MAPK activation controls vascular smooth muscle cell proliferation and chemotaxis via the Jun Kinase pathway. Our findings demonstrate that this regulation takes place via direct interactions between tribbles-1 and MKK4/SEK1, a Jun activator kinase. The activity of this kinase is dependent on tribbles-1 levels, whilst the activation and the expression of MKK4/SEK1 is not. In addition, tribbles-1 expression is elevated in human atherosclerotic arteries compared to non-atherosclerotic controls, suggesting that this protein may pay a role in disease in vivo. In summary, the data presented here suggest an important regulatory role for trb-1 in vascular smooth muscle cell biology

    Electron Spin Resonance in S=1/2 antiferromagnetic chains

    Full text link
    A systematic field-theory approach to Electron Spin Resonance (ESR) in the S=1/2S=1/2 quantum antiferromagnetic chain at low temperature TT (compared to the exchange coupling JJ) is developed. In particular, effects of a transverse staggered field hh and an exchange anisotropy (including a dipolar interaction) δ\delta on the ESR lineshape are discussed. In the lowest order of perturbation theory, the linewidth is given as Jh2/T2\propto Jh^2/T^2 and (δ/J)2T\propto (\delta/J)^2 T, respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower temperature; non-perturbative effects at very low temperature are discussed using exact results on the sine-Gordon field theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with the field-theory results.Comment: 53 pages in REVTEX, 7 figures in EPS included; revised version with missing references and correction

    Tensile strength assay comparing the resistance between two different autologous platelet concentrates (leucocyte-platelet rich fibrin versus advanced-platelet rich fibrin): a pilot study

    Get PDF
    Background: Since the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF. Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical properties in specific the resistance to tensile strength which consequently may influence the time for membrane degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison. Findings: The harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed the protocols described in the literature, within a total of 13 membranes produced for each protocol (n = 26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p < 0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p < 0.05 using unpaired t test). Conclusion: With this study, it was possible to conclude that indeed A-PRF has a significative higher maximal traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when two opposing forces are applied.info:eu-repo/semantics/publishedVersio

    JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure

    Get PDF
    Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy
    corecore