The European Proximity Operation Simulator (EPOS) of the DLR-German Aerospace
Center is a robotics-based simulator that aims at validating and verifying a
satellite docking phase. The generic concept features a robotics tracking
system working in closed loop with a force/torque feedback signal. Inherent
delays in the tracking system combined with typical high stiffness at contact
challenge the stability of the closed-loop system. The proposed concept of
operations is hybrid: the feedback signal is a superposition of a measured
value and of a virtual value that can be tuned in order to guarantee a desired
behavior. This paper is concerned with an analytical study of the system's
closed-loop stability, and with an experimental validation of the hybrid
concept of operations in one dimension (1D). The robotics simulator is modeled
as a second-order loop-delay system and closed-form expressions for the
critical delay and associated frequency are derived as a function of the
satellites' mass and the contact dynamics stiffness and damping parameters. A
numerical illustration sheds light on the impact of the parameters on the
stability regions. A first-order Pade approximation provides additional means
of stability investigation. Experiments were performed and tests results are
described for varying values of the mass and the damping coefficients. The
empirical determination of instability is based on the coefficient of
restitution and on the observed energy. There is a very good agreement between
the critical damping values predicted by the analysis and observed during the
tests...Comment: 16 page