96 research outputs found

    Observational Constraints of Modified Chaplygin Gas in Loop Quantum Cosmology

    Full text link
    We have considered the FRW universe in loop quantum cosmology (LQC) model filled with the dark matter (perfect fluid with negligible pressure) and the modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of the observable parameters Ωm0\Omega_{m0}, Ωx0\Omega_{x0} and H0H_{0} with the redshift zz and the other parameters like AA, BB, CC and α\alpha. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ2\chi^{2} test. The best-fit values of the parameters are obtained by 66%, 90% and 99% confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (B,CB,C) by fixing some other parameters α\alpha and AA. From the best fit of distance modulus μ(z)\mu(z) for our theoretical MCG model in LQC, we concluded that our model is in agreement with the union2 sample data.Comment: 14 pages, 10 figures, Accepted in EPJC. arXiv admin note: text overlap with arXiv:astro-ph/0311622 by other author

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=Λ+w1ρ(a)+w2aβ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a3(1+w)+ρ02aβ+ρ03a3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,00.4\Omega_{\text{m},0} \simeq 0.4 and n1n \simeq -1 (β=3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Scale issues in soil moisture modelling: problems and prospects

    Get PDF
    Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    NRF2 activation reprogrammes defects in oxidative metabolism to restore macrophage function in COPD

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration–derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2–related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore