70 research outputs found

    Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants

    No full text
    Closely related HLA alleles presenting similar HIV-1 epitopes can be associated with variable clinical outcome. Here the authors report their findings on CD8+ T cell responses to the HIV-1 Gag-p24 TL9 immunodominant epitope in the context of closely related protective and less protective HLA alleles, and their differential effect on viral contro

    Subtype-Specific Differences in Gag- Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression

    No full text
    ABSTRACT There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P &lt; 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C &lt; D &lt; intersubtype recombinants ( P &lt; 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa. </jats:p

    Bioaccessibility of iron in pearl millet flour contaminated with different soil types

    Get PDF
    A controlled in-vitro experiment was conducted to determine the bioaccessibility of extrinsic soil iron in pearl millet contaminated with typical Malawian soils. Pearl millet was contaminated with soils at ratios typically encountered in real life. Iron concentrations of soil-contaminated flour increased such that soil-derived iron contributed 56, 83 and 91% of the total iron when the proportions of soil were 0.1, 0.5 and 1% (soil: grain w/w), respectively. When soils were digested alone, the concentration of bioaccessible iron differed depending on the type of soil. However, the concentration of bioaccessible iron in soil-contaminated flours did not exceed that of uncontaminated flour and there was no effect of soil type. This suggests that knowledge of the proportion of extrinsic soil iron in soil-contaminated grains would be useful for iron bioavailability estimations. Vanadium is a reliable indicator of the presence of extrinsic soil iron in grains and has potential applications in this regard

    Beneficial HLA-mediated viral polymorphisms on the transmitted virus additively influence disease progression in HIV-1, subtype C infection

    Get PDF
    Transmitted viral factors have been shown to affect disease progression but whether infection with viruses carrying beneficial HLA-mediated escape polymorphisms affects disease progression in HLA-mismatched participants remains controversial

    Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection

    Get PDF
    Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies

    Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses

    Get PDF
    Ajuts: R01/R56 NIH Grant AI-52779 (GDT), NIH F31 Fellowship (1F31AI106519-01)(TLP), Center for AIDS Research (P30 AI 64518) i Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, grant number UM1-AI100645-01 (AM)Abstract.Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control

    Intersubtype differences in the effect of a rare p24 Gag mutation on HIV-1 replicative fitness.

    Get PDF
    Certain immune-driven mutations in HIV-1, such as those arising in p24Gag, decrease viral replicative capacity. However, the intersubtype differences in the replicative consequences of such mutations have not been explored. In HIV-1 subtype B, the p24Gag M250I mutation is a rare variant (0.6%) that is enriched among elite controllers (7.2%) (P 0.0005) and appears to be a rare escape variant selected by HLA-B58 supertype alleles (P<0.01). In contrast, in subtype C, it is a relatively common minor polymorphic variant (10 to 15%) whose appearance is not associated with a particular HLA allele. Using site-directed mutant viruses, we demonstrate that M250I reduces in vitro viral replicative capacity in both subtype B and subtype C sequences. However, whereas in subtype C downstream compensatory mutations at p24Gag codons 252 and 260 reduce the adverse effects of M250I, fitness costs in subtype B appear difficult to restore. Indeed, patient-derived subtype B sequences harboring M250I exhibited in vitro replicative defects, while those from subtype C did not. The structural implications of M250I were predicted by protein modeling to be greater in subtype B versus C, providing a potential explanation for its lower frequency and enhanced replicative defects in subtype B. In addition to accounting for genetic differences between HIV-1 subtypes, the design of cytotoxic-T-lymphocyte-based vaccines may need to account for differential effects of host-driven viral evolution on viral fitness

    Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point

    Get PDF
    CD8[superscript +] T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8[superscript +] T cell response, with limited bystander activation of non-HIV memory CD8[superscript +] T cells. HIV-specific CD8[superscript +] T cells secreted little interferon-γ, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8[superscript +] T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8[superscript +] T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.Bill & Melinda Gates FoundationCollaboration for AIDS Vaccine DiscoveryWitten Family FoundationDan and Marjorie SullivanUrsula BrunnerGary and Loren CohenMark and Lisa Schwartz Foundation,International AIDS Vaccine Initiative (UKZNRSA1001)National Institute of Allergy and Infectious Diseases (U.S.) (R37AI067073)Center for AIDS Research (P30 AI060354

    Selenium speciation and bioaccessibility in Se-fertilised crops of dietary importance in Malawi

    Get PDF
    The purpose of this research was to explore the speciation and bioaccessibility of native soil-derived selenium (Se) versus Se applied via fertiliser in the edible portions of maize, groundnut and cowpea grown in Malawi. Fertiliser-derived Se, applied as isotopically labelled selenate, contributed 88�97% of the total Se in the edible portions. Both soil and fertiliser-derived Se were transformed into similar species, with more than 90% of the extracted Se in an organic form. The main form of fertiliser-derived Se in grain was selenomethionine with an abundance of 92.0 ± 7.6% in maize, 63.7 ± 6.2% in cowpea and 85.2 ± 1.9% in groundnut. In addition, cowpea contained 32.7 ± 6.2% of Se-methyl-selenocysteine. The mean bioaccessibility of fertiliser-derived Se was 73.9 ± 8.5% with no statistically-significant difference across all crops despite some variation in speciation. Understanding the contribution of fertiliser-derived Se to the formation of organic forms of Se in crops is crucial, given that organic Se species are more bioaccessible than inorganic forms

    Temporal association of HLA-B*81:01- and HLA-B*39:10-mediated HIV-1 p24 sequence evolution with disease progression.

    Get PDF
    HLA-B*81:01 and HLA-B*39:10 alleles have been associated with viremic control in HIV-1 subtype C infection. Both alleles restrict the TL9 epitope in p24 Gag, and cytotoxic-T-lymphocyte (CTL)-mediated escape mutations in this epitope have been associated with an in vitro fitness cost to the virus. We investigated the timing and impact of mutations in the TL9 epitope on disease progression in five B*81:01- and two B*39:10-positive subtype C-infected individuals. Whereas both B*39:10 participants sampled at 2 months postinfection had viruses with mutations in the TL9 epitope, in three of the five (3/5) B*81:01 participants, TL9 escape mutations were only detected 10 months after infection, taking an additional 10 to 15 months to reach fixation. In the two remaining B*81:01 individuals, one carried a TL9 escape variant at 2 weeks postinfection, whereas no escape mutations were detected in the virus from the other participant for up to 33 months postinfection, despite CTL targeting of the epitope. In all participants, escape mutations in TL9 were linked to coevolving residues in the region of Gag known to be associated with host tropism. Late escape in TL9, together with coevolution of putative compensatory mutations, coincided with a spontaneous increase in viral loads in two individuals who were otherwise controlling the infection. These results provide in vivo evidence of the detrimental impact of B*81:01-mediated viral evolution, in a single Gag p24 epitope, on the control of viremia
    • …
    corecore