2,302 research outputs found
Voluntary exercise can strengthen the circadian system in aged mice
Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-})  D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp)  D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
  http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Wheat-barley hybridization – the last forty years
Abstract Several useful alien gene transfers have
been reported from related species into wheat (Triticum
aestivum), but very few publications have dealt
with the development of wheat/barley (Hordeum
vulgare) introgression lines. An overview is given
here of wheat 9 barley hybridization over the last
forty years, including the development of
wheat 9 barley hybrids, and of addition and translocation
lines with various barley cultivars. A short
summary is also given of the wheat 9 barley hybrids
produced with other Hordeum species. The meiotic
pairing behaviour of wheat 9 barley hybrids is presented,
with special regard to the detection of wheat–
barley homoeologous pairing using the molecular
cytogenetic technique GISH. The effect of in vitro
multiplication on the genome composition of intergeneric
hybrids is discussed, and the production and
characterization of the latest wheat/barley translocation
lines are presented. An overview of the agronomical
traits (b-glucan content, earliness, salt tolerance,
sprouting resistance, etc.) of the newly developed
introgression lines is given. The exploitation and
possible use of wheat/barley introgression lines for
the most up-to-date molecular genetic studies
(transcriptome analysis, sequencing of flow-sorted
chromosomes) are also discussed
Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations
We compare four different types of equations of motion for reduced density
matrix of a system of molecular excitons interacting with thermodynamic bath.
All four equations are of second order in the linear system-bath interaction
Hamiltonian, with different approximations applied in their derivation. In
particular we compare time-nonlocal equations obtained from so-called
Nakajima-Zwanzig identity and the time-local equations resulting from the
partial ordering prescription of the cummulant expansion. In each of these
equations we alternatively apply secular approximation to decouple population
and coherence dynamics from each other. We focus on the dynamics of intraband
electronic coherences of the excitonic system which can be traced by coherent
two-dimensional spectroscopy. We discuss the applicability of the four
relaxation theories to simulations of population and coherence dynamics, and
identify features of the two-dimensional coherent spectrum that allow us to
distinguish time-nonlocal effects.Comment: 14 pages, 8 figure
HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators
WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistanc
Reactive oxygen species regulate context-dependent inhibition of NFAT5 target genes
The activation of nuclear factor of activated T cells 5(NFAT5), a well-known osmoprotective factor, can be induced by isotonic stimuli, such as activated Toll-like receptors (TLRs). It is unclear, however, how NFAT5 discriminates between isotonic and hypertonic stimuli. In this study we identified a novel context-dependent suppression of NFAT5 target gene expression in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) or a high salt (NaCl) concentration. Although LPS and NaCl both used NFAT5 as a core transcription factor, these stimuli mutually inhibited distinct sets of NFAT5 targets within the cells. Although reactive oxygen species (ROS) are essential for this inhibition, the source of ROS differed depending on the context: mitochondria for high salt and xanthine oxidase for TLRs. Specifically, the high salt-induced suppression of interleukin-6 (IL-6) production was mediated through the ROS-induced inhibition of NFAT5 binding to the IL-6 promoter. The context-dependent inhibition of NFAT5 target gene expression was also confirmed in mouse spleen and kidney tissues that were cotreated with LPS and high salt. Taken together, our data suggest that ROS function as molecular sensors to discriminate between TLR ligation and osmotic stimuli in RAW 264.7 macrophages, directing NFAT5 activity toward proinflammatory or hypertonic responses in a context-dependent manner.open3
Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
Recommended from our members
Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design
Heterosis refers to the phenomenon in which an F1 hybrid exhibits enhanced growth or agronomic performance. However, previous theoretical studies on heterosis have
been based on bi-parental segregating populations instead of F1 hybrids. To understand the genetic basis of heterosis, here we used a subset of F1 hybrids, named a partial North Carolina II design, to perform association mapping for dependent variables: original trait value, general combining ability (GCA), specific combining ability (SCA) and mid-parental heterosis (MPH). Our models jointly fitted all the additive, dominance and epistatic effects. The analyses resulted in several important findings: 1) Main components are additive and
additive-by-additive effects for GCA and dominance-related effects for SCA and MPH, and additive-by-dominant effect for MPH was partly identified as additive
effect; 2) the ranking of factors affecting heterosis was dominance > dominance-by-dominance > over-dominance > complete dominance; and 3) increasing the proportion of F1 hybrids in the population could significantly increase the power to detect dominance-related effects, and slightly reduce the power to detect additive and additive-by-additive effects. Analyses of cotton and rapeseed datasets showed that more additive-by-additive QTL were detected from GCA than from trait phenotype, and fewer QTL were from MPH than from other dependent variables
First Observation of and Decays
We have observed new channels for  decays with an  in the final
state. We study 3-prong tau decays, using the  and
\eta\to 3\piz decay modes and 1-prong decays with two \piz's using the
 channel. The measured branching fractions are
\B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau})
  =(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to
\pi^{-}2\piz\eta\nu_{\tau}
  =(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for
 substructure and measure \B(\tau^{-}\to
f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also
searched for  production and obtain 90% CL upper limits
\B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to
\pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through
  http://w4.lns.cornell.edu/public/CLN
- …
