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Abstract

Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat
expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further
characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the
development and use of animal and cellular models is considered essential. Studies of lower organisms have already
contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in
physiological terms.

Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice
(9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to
neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three
YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced
expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show
increased sensitivity to oxidative stress and downregulation of Pgc-1a and antioxidant gene expression levels, especially
Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed
significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability.

Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the
NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular
and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide
very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a
source of cells for cell therapy testing in FRDA mice.
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Introduction

FRDA is an autosomal recessive neurodegenerative mitochon-

drial disorder caused primarily by a homozygous GAA repeat

expansion mutation within intron 1 of the frataxin (FXN) gene,

located on chromosome 9q21.1 [1]. Approximately 4% of FRDA

patients are compound heterozygotes, having a GAA repeat

expansion on one allele and an inactivating or loss-of-function

FXN gene mutation, such as a point mutation [2,3] or a deletion/

duplication [4–6] on the other allele. The prevalence of FRDA is

1–2 in 50,000 in Caucasian populations with an equal occurrence

in both genders [7] and an estimated carrier frequency of 1:60 to

1:100 [8]. Unaffected individuals have up to 43 GAA repeats,

while affected individuals have 44 to 1700 GAA repeats, most

commonly between 600–900 GAA repeats [8,9]. The length of the

smaller GAA repeat correlates with FRDA disease severity and

inversely correlates with the age of onset [10,11]. Although the

cause of the GAA repeat expansions in FRDA is not fully

understood, there is evidence for involvement of abnormal DNA

replication, transcription or repair [12–14]. The effect of the GAA

repeat expansion is to decrease expression of the essential and

ubiquitously expressed mitochondrial protein frataxin, with levels

in FRDA patients ranging from 4% to 29% that of normal [15].

However, asymptomatic carriers produce about 50% frataxin

levels compared to unaffected individuals [16]. Therefore, drugs

that induce frataxin expression, at least to the levels of healthy

carriers, would be beneficial.

Reduced levels of frataxin in FRDA patients are associated with

defects of iron-sulphur (Fe-S) cluster biosynthesis [17], mitochon-

drial iron accumulation in heart, spinal cord and dentate nucleus

[18–20], and increased susceptibility to oxidative stress [21].

Pathologically the most obvious effects are loss of large sensory

neurons in the dorsal root ganglia (DRG) and degenerative

atrophy of the posterior columns of the spinal cord, contributing to

symptoms of progressive ataxia, muscle weakness, and sensory
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deficit. In addition to progressive neurological disability, there is

also pathological involvement of non-neuronal tissues, with

hypertrophic cardiomyopathy a common feature, and diabetes

mellitus identified in approximately 10% of FRDA patients [22].

Skeletal abnormalities such as kyphoscoliosis and pes cavus are

also common. At present there is no effective therapy for FRDA,

and affected individuals generally die in early adulthood from the

associated heart disease. Therefore, there is a high unmet clinical

need to develop a therapy for this devastating disorder.

Model systems of human cells and/or non-human cells and

organisms can provide insights into FRDA disease pathology. The

high evolutionary conservation of frataxin across the species has

enabled the development of disease models in various organisms,

from the unicellular eukaryote Saccharomyces cerevisiae to the

complex multicellular mouse model. Depending on the frataxin

expression levels, various models of FRDA have shown that

different, and even opposite, phenotypes can be observed

(reviewed in [23,24]). Therefore, a combination of studies is

needed for the better understanding of the pathophysiological

functions of frataxin. With this in mind, several groups have

previously developed useful FRDA cell models. For example, to

generate a cellular model of a neural lineage, Tan and colleagues

transfected human neuronal precursor NT2 (N-tera2) cells with

frataxin-specific interfering RNA (RNAi). The resultant cell line

showed approximately 70% reduction in FXN mRNA and

corresponding reduced levels of frataxin protein were found

compared with a scrambled RNAi treated cell line [25]. Sarsero

and colleagues generated another human cell model with a BAC

genomic reporter construct consisting of an in-frame fusion

between the human FXN gene and EGFP under the control of

FXN promoter [26]. However, due to the absence of expanded

GAA repeats (the construct has 6 GAA repeats) this model only

allows the identification of molecules which act on the WT

promoter but not on GAA repeats. Grant and colleagues

generated an additional GFP reporter cell line by combining part

of the first intron of FXN, containing either 15 or 148 GAA

repeats, to the coding sequence of EGFP [27]. Subsequent analysis

of GFP expression levels by fluorescence assay and western

blotting demonstrated reduced levels of GFP expression in the

[GAA]148 cell line compared with the [GAA]15 cell line [27],

suggesting that these cell lines are appropriate models to study the

GAA-mediated silencing effect of FXN gene. Similarly, Lufino and

colleagues have generated a clonal human cell line by inserting

,310 GAA NTTC repeats at intron 1 of the FXN gene and

demonstrated that the insertion of such repeats can recapitulate

the epigenetic modifications and FXN gene repression, as seen in

FRDA patients [28]. Calmels and colleagues have reported the

establishment of cellular models based on frataxin missense

mutations [29]. In addition, recent reports have described the

establishment of human induced pluripotent stem (iPS) cells from

FRDA patient fibroblasts [30–32], and found MSH2-dependent

expansion of GAA repeats [30].

None of the currently available cell models reproduce all of the

essential molecular and cellular disease mechanisms that are

known to occur in FRDA patients. Therefore, there is still a need

for the development of further cell models. A good FRDA cell

model should have significant reduction of frataxin expression,

ideally as a result of transcriptional silencing mediated by a GAA

expansion within the genomic context of the frataxin locus.

Therefore, we have developed novel fibroblasts, NSCs and

differentiated NSCs from a mouse model that has normal-sized

GAA repeats (9 repeats, Y47R) [33] and another mouse model

with expanded GAA repeats (190+120 repeats, YG8R) [34]. In

line with the FRDA-like phenotype, the YG8R mouse cellular

models exhibit GAA repeat-mediated FXN gene silencing associ-

ated with increased DNA methylation, together with reduced

levels of aconitase activity and Pgc-1a and Sod2 expression levels.

Furthermore, the YG8R cells also show downregulation of several

MMR genes, suggesting a potential deficit in the MMR gene

machinery that could contribute to an observed GAA repeat

stability.

Materials and Methods

Animal Procedures and Cell Culture
Primary cells were obtained from schedule 1 culling of two

Y47R (9 GAA repeats) and two YG8R (190 GAA repeats) adult

mice. The mice were obtained by breeding procedures in

accordance with a commitment to replacement, refinement and

reduction and no in vivo experiments were performed on these

mice. Mice were housed in conventional open cages with Litaspen

Premium 8/20 bedding, paper wool nesting and standard fun

tunnel environmental enrichment, with 13 hours light, 11 hours

dark, 20–23uC and 45–60% humidity. The mice were given a diet

of SDS RM3 Expanded food pellets and standard drinking water.

All procedures were carried out in accordance with the UK Home

Office ‘Animals (Scientific Procedures) Act 1986’ and with

approval from the Brunel University Animals Welfare and Ethical

Review Board. Two fibroblast cell lines were established from both

Y47R and YG8R mouse kidney tissues [33,34]. The tissues were

aseptically collected, chopped into small pieces, followed by

enzymatic digestion with trypsin-EDTA (0.25%). Primary cell

cultures were grown in DMEM medium with 10% FBS and 1%

penicillin-streptomycin (all from Invitrogen) in 5% CO2 at 37uC.

Two NSC lines were also established from both Y47R and YG8R

mice. The mice were sacrificed and the brains were collected

carefully in Pg solution (16PBS, 30% glucose and 1% pen-strep)

followed by collecting the sub-ventricular zone (SVZ) using a

dissecting microscope. The tissues were minced into small pieces

with scalpel blades and digested with a 10 ml papain solution,

followed by incubation at 37uC for 60 min on a rocking platform.

At the end of the incubation, cells were collected by centrifugation

at 800 g for 10 min and almost all the supernatant overlaying the

cell pellet was removed carefully, without using suction. The cell

pellet was dissociated several times by triturating up and down

with p1000 Gilson tips. Cells were resuspended in 7 ml EBSS

followed by centrifugation at 800 g for 10 min at room

temperature. After centrifugation, the supernatant was discarded

and the cell pellet was dissociated with p200 Gilson tips by

pipetting up and down 20–30 times. Cells were resuspended in

8 ml EBSS and centrifuged at 600 g for 15 min. The supernatant

was discarded and the cell pellet was gently dissociated with a p200

Gilson tip. Finally, the cell pellet was resuspended in 1 ml of

complete NSC medium and transferred to a flask containing 7 ml

of NSC medium. NSC medium consists of 10% NSC proliferation

supplements, 20 ng/ml rhEGF, 10 ng/ml rhFGF (basic) and

2 mg/ml heparin (all from Stem Cell Technologies). Cells were

incubated in 5% CO2, 95% humidity at 37uC. The differentiation

of NSCs was carried out by mechanical dissociation of NSCs with

a p200 Gilson tip followed by collection of cells by centrifugation.

The dissociated cells were then incubated with NSC differentiation

medium on poly-d-lysine coated culture flasks. NSC differentiation

medium consisted of NSC basal medium and 10% NSC

differentiation supplements (Stem Cell Technologies). The medi-

um was replaced after every two days and differentiated cells were

maintained for 7–10 days. The cells were grown in 5% CO2 at

37uC.

FRDA Mouse Fibroblast and Neural Stem Cell Models
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Immunocytochemistry
Cells were fixed in 4% paraformaldehyde and permeabilized

and incubated with 0.1% Triton X-100 for 15 min. Cells were

then incubated with primary antibodies: beta III-tubulin (Abcam)

as a marker for neurons, Gal-C (Millipore) as a marker for

oligodendrocytes, GFAP (Stem Cell Technologies) as a marker for

astrocytes and CD11b (Abcam) as a marker for microglia. All

antibodies were incubated at 4uC overnight or 37uC for 2 hours.

Secondary antibodies were then added at room temperature

incubated for one hour followed by nuclear staining with DAPI.

GAA Repeat Analysis
Genomic DNA was isolated from 16106 cells by phenol/

chloroform extraction. GAA PCR amplification was carried out

with a conventional PCR kit (Qiagen) using 200–500 ng DNA,

GAA-F and GAA-R primers and PCR conditions as previously

described [1]. GAA PCR products were resolved in 20-cm long

1.5% agarose 1 X TBE gels by electrophoresis at 50 V for 16–

20 h and band sizes were determined by comparison with 1 Kb+
and 100 bp DNA size markers (Invitrogen). The number of GAA

repeats was then determined by subtracting 451 bp (flanking non-

repeat DNA) from the PCR product size, followed by division of

the remaining base pair repeat size by 3.

Quantitative RT-PCR
Total RNA was isolated from approximately 16106 cells with

Trizol (Invitrogen) and cDNA was then prepared by using AMV

reverse transcriptase (Invitrogen) with oligo-dT primers. For the

FAST1expression analysis, the cDNA was synthesised using strand

specific primer: FAST-RT: 59- CCAAGCAGCCT-

CAATTTGTG-39 as previously described [35]. The mRNA

levels were determined by quantitative RT- PCR analysis using

ABI 7900 Fast Real-Time PCR System (Applied Biosystems).

TaqManH gene specific primer pairs and probes were used for

FXN (Hs00175940_m1), Catalase (Mm01340247_m1), Sod1

(Mm01344232_g1), Sod2 (Mm00449725_g1), Gpx1

(Mm00656767_g1), Gapdh (Mm99999915_g1) and b2M
(Mm00437762_m1). The levels of FAST1, MMR genes, Pgc-1a
and Hprt were quantified using SYBRH green (Applied Biosystems)

with the following set of primers: FAST1: N-FAST-F2 59-

GACCCAAGGGAGACTGCAG-39and 59- CACTTCCCAG-

CAAGACAGC-39, Msh2-F 59-GCAACAACAAGAACTTCAG-

CACA-39 and R 59-CCAAGATGACTGGTCGTACAT-39,

Msh3-F 59-GCCTCAGGGTGGTGAGCTGC-39 and R 59-

GATCCAGCGCGTCCTCCACG-39, Msh6-F 59-

TTCTCCCTGGCCAAGGTCGCT-39 and R 59-TCCCACC-

CATGTTTGGTCCGGT-39, Pms2-F 59- ATGGAGCAAACC-

GAAGGCGTG-39 and R 59-GAGGTCGGCAAACTCTTGAA-

39, Pgc-1a-F 59-TGGGGGCACCTGAACAGAACG-39 and R 59-

GACGGTACCGGAGGCTGACAAC-39 and Hprt-F 59-

AGTCCCAGCGTCGTGATTAG-39, Hprt-R 59-

TTTCCAAATCCTCGGCATAATGA-39. The mRNA expres-

sion levels of Gapdh and b2M or Hprt were also measured in all

samples to normalise the gene expression levels to avoid sample-to-

sample differences in RNA input, RNA quality and reverse

transcription efficiency. Either 1X TaqManH Universal PCR

Master Mix (Applied Biosystems) or 1X Fast SYBRH Green

Master Mix (Applied Biosystems) was used along with 1 ml of

sample cDNA in 20 ml reaction mixture. PCR conditions were set

as10 min at 95uC for enzyme activation followed by 40 two-step

cycles (15 sec at 95uC and 1 min at 60uC). Reactions were carried

out in triplicate for each biological sample and each experiment

was repeated at least two times. Values were expressed relative to

Gapdh and b2M or Hprt, and expression levels were calculated by

22DDCt method and RQ manager software (Applied Biosystems).

Cell Lysates and Frataxin Protein Dipstick Assay
Approximately 1–36106 cells were lysed using Cell LyticTM

buffer (Sigma) and protease inhibitor cocktail (40 ml/ml, 25X

complete) on ice for 15 min. The extracts were clarified by

centrifugation at 10,000 g for 15 min at 4uC and the supernatants

were collected. The protein concentration was determined by

using the BCA Protein Assay Kit (Pierce). Frataxin protein levels

in Y47R and YG8R derived cells were measured by lateral flow

immunoassay using Frataxin Dipsticks (Mitosciences), as previ-

ously described [36]. Frataxin signal intensities were measured

with a Hamamatsu ICA-1000 immuno-chromato reader (Mitos-

ciences).

MethylScreen Assay
DNA methylation analysis was performed using the ‘MethylSc-

reen’ method [37], which uses combined restriction digestion of

DNA with methylation sensitive and methylation dependent

restriction enzymes, MSRE and MDRE respectively. MethylSc-

reen was used to analyse the two CpG sites, CpG3 and CpG6

[38], at FXN locus upstream of the GAA repeat. 1 mg of genomic

DNA was digested with: (1) a MSRE, (2) MDRE, (3) both MSRE

and MDRE (double digest, DD), and (4) neither MSRE or MDRE

(mock control). The MSREs used for CpGs 3 and 6 were AciI

(Fermentas), and Hpy188III (New England Biolabs), respectively

[38]. The MDRE used for all two CpGs was McrBc (Fermentas).

A 50ng aliquot of digested DNA was then amplified by

quantitative PCR using SYBRH Green (Applied Biosystems) and

an ABI 7900 Fast Real-Time PCR System (Applied Biosystems)

with the following primers: CpG3 F 59-GA-

GACGTGGCTTTGTTTTCTG-39 and R 59-

GTTTCCTCCTTTCAAGCCGTG-39; CpG6 F 59-GAA-

GATGCCAAGGAAGTGGTAG-39 and R 59-GAGCAACA-

CAAATATGGCTTGG-39. PCR quantification was carried out

using the DCt method (values were calculated as 2DCt (mock –

digest) with the mock value set at 100%) and RQ Manager

software (Applied Biosystems). Each qRT-PCR reaction was

performed in triplicate. Methylscreen DNA methylation values

were then calculated as follows: Densely methylated

(DM) = (MSRE-DD)/(100-DD)6100; unmethylated

(UM) = (MDRE-DD)/(100-DD)6100; intermediately methylated

(IM) = 100–(DM+UM).

Aconitase Assay
Aconitase activities were determined using the Aconitase Assay

Kit (Cayman Chemical Company, 705502). To perform the

assays, cell protein lysates (50 ml) were added to 200 ml of substrate

mix (50 mM Tris/HCl pH 7.4, 0.4 mM NADP, 5 mM Na citrate,

0.6 mM MgCl2, 0.1% (v/v) Triton X-100 and 1 U isocitrate

dehydrogenase) and the reactions were incubated at 37uC for

15 min, followed by spectrophotometric absorbance measure-

ments every minute for 15 min at 340 nm 37uC to determine the

reaction slope. Aconitase activities of mouse cells were then

normalized to citrate synthase activities, which were determined

using a citrate synthase assay kit (Sigma, CS0720).

Oxidative Stress and PrestoBlueH Cell Viability Assay
Cells were cultured in a 48 well culture plate for 2 days (50%

confluence) and washed once with PBS followed by adding fresh

medium containing 100 mM of H2O2 or 100 mg/ml ferric

ammonium citrate (FAC) and 1 mM L-buthionine-sulfoximine

FRDA Mouse Fibroblast and Neural Stem Cell Models
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(BSO). Untreated cells were also grown simultaneously as controls.

Cells were incubated for 24 hours and PrestoBlueH reagent

(Invitrogen) was added to a 1x final concentration followed by

incubating the cells for further 24 hours. Upon entering a living

cell, PrestoBlueH reagent is reduced from resazurin, a blue

compound with no intrinsic fluorescent value, to resorufin which

is red in colour and highly fluorescent. Conversion is proportional

to the number of metabolically active cells and therefore can be

measured quantitatively. The colour intensity was then measured

using xMarkTM Microplate Absorbance Spectrophotometer (Bio-

Rad) with 570 nm of excitation wavelength and 600 nm emission

wavelength. All samples were analysed as 4–6 independent

experiments.

Statistical Analysis
Statistical values comparing two sample groups were deter-

mined using the student’s t test and a statistical significance level of

P#0.05 was chosen.

Results

Generation of Fibroblast and NSC Cultured Cell Lines and
Differentiation of NSCs

To study the effects of the GAA repeat expansion on FXN

expression in non-CNS and CNS cells, we have established

fibroblast and NSC cultured cell lines from adult Y47R control

mice (9 GAA repeats) and YG8R FRDA mice (190+90 GAA

repeats). Fibroblasts were obtained from freshly isolated kidneys,

while NSCs were isolated from the sub-ventricular zone (SVZ) of

the brain and dissociated mechanically followed by enzymatic

digestion of the tissue. NSCs were maintained in NSC medium

with rhEGF and rhFGF growth factors. After 10–14 days in

culture, NSCs were observed as free-floating ‘neurospheres’, with

each neurosphere containing approximately 200–500 cells (Fig. 1).

To determine whether the NSCs were capable of differentiating

into neurons, oligodendrocytes and astrocytes, we induced

differentiation using either intact NSCs or dissociated NSCs as

starting cells (Fig. 1). After differentiation, the resultant cells were

subjected to immunofluorescence assays with cell specific antibod-

ies: beta III-tubulin, Gal-C and GFAP primary antibodies for

neurons, oligodendrocytes and astrocytes, respectively (Fig. 2). The

results clearly indicated the presence of neurons, oligodendrocytes

and astrocytes in the differentiated NSCs. However, no signal was

obtained using microglia-specific antibodies, CD11b, indicating

the inability of NSCs to form microglia (Fig. 2), consistent with

previous reports [39].

GAA Repeats are Stable in YG8R Fibroblasts, NSCs and
Differentiated NSCs

Non-interrupted FRDA GAA repeats are known to be dynamic,

exhibiting both intergenerational and somatic instability. Thus,

non-pathogenic parental premutations can be transmitted to

offspring as expanded pathogenic GAA repeats [40], while age-

related GAA hyperexpansion has been detected particularly in

DRG and cerebellum tissues [41]. We have previously shown that

YG8R mice, which contain non-interrupted GAA repeats, also

exhibit both somatic intergenerational and somatic instability,

particularly in the DRG [14,42]. Therefore, we were interested to

determine if cells derived from such an animal showed GAA

repeat instability when grown in culture. PCR analysis of the FXN

GAA repeats from cells isolated from 4–11 consecutive passages of

YG8R fibroblasts (Fig. 3a) or 4–12 consecutive passages of NSCs

(Fig. 3b) showed no GAA repeat instability. Furthermore,

differentiated NSCs obtained from 4–11 consecutive passages of

NSCs also showed no GAA repeat instability (Fig. 3c). This is

consistent with previous reports where GAA repeat instability has

only been observed in iPS cells derived from skin fibroblasts of

FRDA patients, but not in the fibroblasts themselves nor in the

NSCs derived from the iPS cells [30,32]. As expected, the control

Y47R-derived fibroblasts, NSCs and differentiated NSCs also did

not show any GAA repeat instability.

Reduced Frataxin mRNA and Protein Levels in YG8R
Mouse Cells

Since FRDA is characterised by reduced levels of frataxin

mRNA and protein, we have quantified the frataxin mRNA and

protein levels in the Y47R and YG8R mouse derived fibroblasts,

NSCs and differentiated NSCs. FXN mRNA expression analysis of

YG8R cells revealed a 23% reduction in fibroblasts (p,0.001),

42% reduction in NSCs (p,0.001) and a non-significant 41%

decrease in the differentiated NSCs compared to Y47R cells

(Fig. 4a). Similarly, quantification of frataxin protein YG8R levels

also revealed reduced levels of frataxin protein in fibroblasts (40%,

p,0.05), NSCs (23%, p,0.05) and differentiated NSCs (15%, ns)

compared to Y47R mouse cells (Fig. 4b). This indicates that the

expanded GAA repeats impair FXN transcription in all YG8R

cultured cell types.

Increased FAST1 Levels in YG8R Mouse Primary
Fibroblasts

Antisense transcription has recently been proposed to have an

important role in regulation of sense gene expression. Recent

evidences have also been suggested that the antisense transcripts

are associated with number of TNR expansion diseases such as

HD [43], FRAXA [44,45], SCA7 [46], SCA8 [47] and DM1 [48].

Recently, De Biase and colleagues [35] reported that frataxin

antisense transcript 1 (FAST1) levels are significantly increased in

human FRDA primary fibroblast cells and are associated with

depletion of CCCTC-binding factor (CTCF), suggesting the

involvement of these cis- and trans-acting elements in the

transcriptional repression of the FXN gene [35]. To examine

FAST1 expression levels in Y47R and YG8R cells, we performed

strand-specific cDNA synthesis of FAST1 (Fig. 5a) followed by

qRT-PCR analysis. In agreement with the findings by De Biase

and colleagues [35], FAST1 levels showed significant increase in

YG8R primary fibroblasts (183%, p,0.05). However, YG8R

NSCs and differentiated NSCs did not show a significant change

in FAST1 levels compared to Y47R cells (Fig. 5b), suggesting that

effects on FAST1 expression may be cell-type selective.

Increased DNA Methylation in YG8R Mouse Cells
The FXN transcriptional silencing mechanism in FRDA is not

yet fully understood. However, recent evidence indicates that an

epigenetic abnormality is involved [49–51]. Therefore, we have

quantified the degree of DNA methylation in the Y47R and

YG8R mouse cells by MethylScreen assay [37] at two CpG sites of

the FXN upstream GAA repeat region, designated CpG3 and

CpG6 [38]. CpG3 and CpG6 sites have previously been identified

as two significantly differentially methylated sites in FRDA versus

control lymphoblastoid cells [49]. Our results from fibroblasts,

NSCs and differentiated NSCs reveal an increase in DNA

methylation at both CpG sites in YG8R cells compared with

control Y47R cells. In fibroblast cells we found that densely

methylated (DM) values increased from 2.2% to 15.3% at CpG3

(p,0.01) and from 48% to 83% at CpG6 (p,0.001) (Fig. 6).

Similarly, the DNA methylation levels were significantly increased

in NSCs with DM values increasing from 8.3% to 77.4% at CpG3

FRDA Mouse Fibroblast and Neural Stem Cell Models

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89488



Figure 1. Mouse NSCs and differentiated NSCs in culture. a) NSC appeared as ‘‘Neurospheres’’ after 10–14 days of culture with NSC medium
supplemented with rhEGF and rhFGF growth factors (10X magnification). b) The differentiation of NSCs was induced by incubating the cells in the
NSC medium with differentiation supplements. The early stages of the differentiation, where mixed cells are seen emerging from the neurospheres
(10X magnification). Scale bars = 100 mm.
doi:10.1371/journal.pone.0089488.g001

Figure 2. Characterization of differentiated NSCs by immunocytochemistry. (a) After 7 days in culture, differentiated NSCs were positively
stained with b III-tubulin (neurons), GFAP (astrocytes), and Gal-C (oligodendrocytes) and negatively stained with CD11b (microglia); (b) nuclei stained
with DAPI, and (c) merged images. The images were taken at the magnification of 40X. Scale bars = 25 mm.
doi:10.1371/journal.pone.0089488.g002

FRDA Mouse Fibroblast and Neural Stem Cell Models
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(p,0.001) and from 15% to 83% at CpG6 (p,0.001) (Fig. 6). The

results for differentiated NSCs have also shown a significant

increase in DNA methylation at the two sites studied in YG8R

cells compared to Y47R cells, with DM values increasing from

1.9% to 29.8% at CpG3 (p,0.001) and from 3% to 36% at CpG6

(p,0.001) (Fig. 6). These results are in agreement with recently

published data using YG8R mouse heart and cerebellum tissue

[50], suggesting that these cells will serve as a useful cell culture

system in which to test the potential epigenetic-based frataxin-

increasing compounds.

YG8R Fibroblasts, NSCs and Differentiated NSCs Show
Less Tolerance to Induced Oxidative Stress

Biochemical studies of mitochondrial enzymes have suggested

that FRDA pathology may be, at least in part, caused by oxidative

stress due to and mitochondrial dysfunction. Endomyocardial

biopsies from two unrelated FRDA patients showed deficient

activity of Fe-S containing enzymes, but normal enzyme activities

in skeletal muscle and lymphocytes [52]. Also, human fibroblasts

derived from FRDA patients showed sensitivity to hydrogen

peroxide induced oxidative stress [21]. In addition, the YG8R

FRDA YAC transgenic mouse model also exhibited signs of

oxidative stress [34]. Therefore, we were curious to investigate the

extent of oxidative stress in our YG8R derived fibroblasts, NSCs

and differentiated NSCs. Treatment of YG8R mouse primary

fibroblasts, NSCs and differentiated NSCs with H2O2 for 48 hours

resulted in reduced cell viability, compared to Y47R mouse cells

(Fig. 7). Although the Y47R mouse cells also showed a significant

reduction in cell viability, the reduction in cell viability in YG8R

mouse cells was more pronounced, indicating that these cells have

less tolerance to oxidative stress. We then treated the cells with a

combination of 100 mg/ml FAC and 1 mM BSO for 48 hours

followed by assessing the cell viability by PrestoBlueH assay.

Consistent with our H2O2 results, FAC and BSO treatment of

YG8R mouse cells also showed a significant reduction in cell

Figure 3. GAA repeat instability analysis. Ethidium bromide-stained agarose gels showing inverted images of GAA repeat PCR products
obtained from the successive passages of Y47R and YG8R cells: a) primary fibroblasts (p4-p11), b) NSCs (p4-p12), and c) differentiated NSCs obtained
from NSCs (p4-p11). M=1 kb plus DNA marker, M* = 100 bp DNA marker.
doi:10.1371/journal.pone.0089488.g003

Figure 4. Frataxin expression levels. (a) FXN mRNA expression was analyzed by qRT-PCR of Y47R and YG8R fibroblasts, NSCs and differentiated
NSCs. The mean values of NSCs and differentiated NSCs data are normalized to the mean FXNmRNA level of the Y47R fibroblasts taken as 100%. Two
individual cDNA samples were analyzed for each cell type and each reaction was carried out in triplicate. Values were expressed relative to both
Gapdh and b2M expression levels. b) Frataxin protein levels were assessed by frataxin dipstick assay of cell lysates and values were expressed relative
to the signal intensity of the goat-anti-mouse antibody (GAM). Each reaction was carried out in triplicate. Error bars represent s.e.m (*p,0.05, **p,
0.01, ***p,0.001).
doi:10.1371/journal.pone.0089488.g004
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viability compared to Y47R mouse cells (Fig. 7). This reduction in

cell viability was significant in all cell types.

Reduced Aconitase Activity and Pgc-1a Expression in the
YG8R Mouse Cells

It has been reported that FRDA patient and mouse model

tissues exhibit impaired activities of several Fe-S containing

enzymes, such as aconitase and mitochondrial chain complexes

(MRC) I, II, and III [17,53]. Therefore, we have investigated the

aconitase enzyme activity in the fibroblasts, NSCs and differen-

tiated NSCs of Y47R and YG8R mice. Our findings showed

significantly decreased aconitase activity in the YG8R mouse

fibroblasts (37%, p,0.05) and differentiated NSCs (39%, p,0.05)

compared to Y47R mouse cells (Fig. 8a). However, NSCs showed

no difference in aconitase activity between Y47R and YG8R

mouse cells. This could be due to the comparatively higher levels

of frataxin expression observed in NSCs compared to fibroblasts

and differentiated NSCs (Fig. 4).

Peroxisome proliferator activated receptor gamma (PPAR-c)

coactivator 1a (Pgc-1a) is a transcriptional coactivator that is a

central inducer of mitochondrial biogenesis in cells. It has recently

been reported that Pgc-1a expression is downregulated when the

FXN expression is specifically inhibited by shRNA in human

FRDA fibroblasts [54,55]. In addition, increased FXN expression

was achieved by PPAR-c agonist treatment of FRDA cells [56].

These studies indicate close connection between Pgc-1a and FXN

Figure 5. FAST1 expression analysis in Y47R and YG8R cells. (a) Strand specific RT-PCR using a FAST-RT primer showed the presence of an
antisense transcript. The FAST1 PCR product did not amplify in the absence of reverse transcriptase (RT-). (b) qRT-PCR analysis of FAST1 levels in
fibroblasts, NSCs and differentiated NSCs showed increased levels of FAST1 in fibroblasts but no statistical difference was detected in the other two
cell types of YG8R cells compared to Y47R cells. Two individual cDNA samples were analyzed for each cell type and each reaction was carried out in
triplicate. Values were expressed relative to both Gapdh and Hprt expression levels. Error bars represent s.e.m (*p,0.05). M=1 kb plus DNA marker.
doi:10.1371/journal.pone.0089488.g005

Figure 6. DNA methylation analysis. MethylScreen analysis of two CpG sites, CpG3 and CpG6, in the FXN upstream GAA repeat region of DNA
from Y47R cells and YG8R cells. UM=unmethylated, IM= intermediately methylated, DM=densely methylated. The experiment was repeated twice
for each cell type and each reaction was carried out in duplicate. Error bars = s.e.m.
doi:10.1371/journal.pone.0089488.g006
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expression. Since our YG8R mouse derived cells show reduced

levels of frataxin expression, we also quantified Pgc-1a mRNA

expression in Y47R and YG8R mouse cells and found that Pgc-1a
expression was significantly reduced by 82% (p,0.01) in the

YG8R mouse fibroblasts compared to the Y47R cells (Fig. 8b).

This result is in agreement with previous observations using

human FRDA primary fibroblasts [55]. Although the Pgc-1a
mRNA expression levels were reduced by 25% in the NSCs and

37% in differentiated NSCs, the levels of reduction did not reach

statistical significance.

Evaluation of Antioxidant Gene Expression Levels in
YG8R Mouse Cells

Reduced levels of Sod1 (CuZn-SOD), Sod2 (Mn-SOD) and Gpx1

mRNA levels have previously been identified in YG8R mouse

DRG, associated with decreased Nrf2 expression [57], and also in

Pgc-1a KO mice [58]. In addition, fibroblast cells derived from the

Pgc-1a KO mice also show reduced levels of Catalase mRNA

expression [59]. Similarly, downregulation of FXN and/or Pgc-1a
in the FRDA patients’ fibroblasts and mouse models have shown

significant decrease in the Sod2 and other ROS antioxidant gene

expression levels [34,55,60]. Furthermore, as we have shown here,

YG8R mouse cells also exhibit reduced levels of FXN and Pgc-1a

Figure 7. Susceptibility to oxidative stress in Y47R and YG8R cells. Treatment of Y47R and YG8R cells with 100 mM H2O2 or FAC (100 mg/ml)
and BSO (1 mM) significantly reduced the cell viability in all cell types, but to greater extent in YG8R cells compared to Y47R cells. The experiment was
repeated twice for each cell type and each reaction was carried out as 3–6 replicates. Error bars represent s.e.m (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0089488.g007

Figure 8. Aconitase activity and Pgc-1a expression levels in Y47R and YG8R cells. (a) Aconitase activities for Y47R and YG8R mouse cell
samples. The experiment was performed twice on two samples in triplicate with values being calculated relative to citrate synthase activity. Values
were expressed relative to the Y47R mouse cell value set at 100%. (b) Pgc-1a expression levels in Y47R and YG8R cells were quantified by qRT-PCR
analysis using both Gapdh and b2M as endogenous controls. The mean values of YG8R data are normalized to the mean Pgc-1a mRNA level of the
Y47R cells set at 100%. In each experiment, two individual cDNA samples were analyzed for each cell type and carried out in triplicate. Error bars
represent s.e.m (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0089488.g008
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mRNA levels compared to Y47R control cells. Therefore, we

decided to evaluate the antioxidant capacity in the YG8R cells

compared to Y47R cells by quantifying mRNA levels of Catalase,

Sod1, Sod2 and Gpx1. We did not observe any significant

differences in the Catalase and Sod1 mRNA expression (Fig. 9).

However, Sod2 expression levels were significantly decreased in all

three cell types studied in the YG8R mouse compared to Y47R

mouse cells (Fig. 9). Furthermore, the Gpx1 mRNA levels were

downregulated, but only in the NSCs (p,0.001). These results

further support the hypothesis that reduced expression of FXN,

acting via decreased expression of Pgc-1a and/or Nrf2, may lead to

reduced expression of several antioxidant genes, especially Sod2,

which results in less tolerance to oxidative stress.

Evaluation of DNA Mismatch Repair Gene Expression
Levels in YG8R Mouse Cells

It has recently been suggested that DNA mismatch repair

(MMR) enzymes may play a role in FRDA disease progression by

affecting GAA repeat instability [14,61,62]. Furthermore, in-

creased levels of MSH2 expression in FRDA human iPS cells

contribute to the instability of GAA repeats [30]. We have

previously shown that the YG8R mice have exhibited both

somatic and intergenerational instability of the GAA repeats in vivo

[14,42,63]. However, the primary cultures fibroblasts and NSCs

isolated from this mouse model did not show any GAA repeat

instability (Fig. 3). Therefore, to identify the possible mechanism

underlying the lack of GAA repeat instability in such cells we

quantified the mRNA expression levels of Msh2, Msh3, Msh6 and

Pms2 genes by qRT-PCR. Fibroblasts did not show any significant

difference of MMR gene expression levels between YG8R and

Y47R control mouse cells. However, YG8R NSCs showed

significant reduction in Msh2 (66%, p,0.01), Msh6 (50%, p,

0.05) and Pms2 (69%, p,0.05) expression levels compared to

control Y47R NSCs (Fig. 10). Similarly, differentiated NSCs of

YG8R mice also showed a significant downregulation of all four

MMR genes compared to Y47R cells: such as Msh2 (52%, p,

0.01), Msh3 (53%, p,0.05), Msh6 (66%, p,0.01) and Pms2 (44%,

p,0.01). Therefore, the observed downregulation of MMR genes

may contribute to the lack of GAA repeat instability in such cells.

Discussion

We have generated and characterised novel FRDA mouse

fibroblast and NSCs cell lines from YG8R mice, and we have

shown that the NSCs are capable of differentiating into three

neural cell lineages: neurons (10–15%), oligodendrocytes (15–

20%) and astrocytes (70–80%). In contrast to YG8R mouse tissues

that have shown both intergenerational and somatic instability

in vivo [42,63], YG8R fibroblasts, NSCs and differentiated NSCs

did not exhibit any GAA repeat instability over extensive passage

numbers tested. Similar GAA repeat stability has been detected in

human FRDA fibroblasts and iPSC-derived NSCs [30,32,64].

Although the mechanism underlying this lack of instability in these

cells is not clear, it has been proposed that MMR gene expression

levels may play vital role in GAA repeat instability as increased

expression of MSH2, MSH3 and MSH6 levels have been associated

with increased GAA repeat instability in human iPS cells [30,32].

Also, shRNA knockdown of either MSH2 or MSH3 in a human

cellular model slowed the rate of GAA repeat expansion [61].

Furthermore, ectopic expression of MSH2 and MSH3 in human

primary fibroblasts has triggered GAA repeat expansion at the

FXN gene locus [61]. An important finding in our model cell

culture system is that YG8R NSCs and differentiated NSCs

containing stable expanded GAA repeats show downregulation of

several MMR genes. This finding supports there being a role for

the MMR system in GAA repeat instability in FRDA.

To further characterise the YG8R mouse cells, we quantified

the frataxin mRNA and protein expression levels at the FXN locus

compared to control Y47R cells. We detected reduced levels of

frataxin expression, indicating that expanded GAA repeats induce

transcriptional silencing of the FXN gene as seen in FRDA

patients. Consistent with previous FRDA fibroblast data [35],

FAST1 antisense transcript levels were found to be significantly

elevated in YG8R fibroblasts. However, NSCs and differentiated

Figure 9. Antioxidant gene expression analysis. Catalase, Sod1, Sod2 and Gpx1 gene expression levels were determined in all three Y47R and
YG8R cell types by qRT-PCR. Values were expressed relative to the levels of both Gapdh and b2M and in each case all gene expression levels were
normalized to the mean expression levels of the Catalase gene of Y47R cells set at 100%. Two individual cDNA samples were analyzed for each cell
type and each reaction was carried out in triplicate. Error bars represent s.e.m (*p,0.05, **p,0.01, ***0.001).
doi:10.1371/journal.pone.0089488.g009
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NSCs displayed no significant differences in FAST1 levels,

indicating that the regulation of FAST1 expression may be cell

selective. We have previously shown that the YG8R mice

displayed increased levels of DNA methylation at the upstream

region of the GAA repeats in brain, heart and cerebellum tissues

[50]. To evaluate this epigenetic mark in our YG8R cells, we

quantified the DNA methylation status at two CpG sites of the

FXN upstream GAA repeat region, designated CpG3 and CpG6

[38]. Our analysis revealed a significant increase in DNA

methylation in all three YG8R cell types at both sites, consistent

with previous results using FRDA lymphoblastoid cells [49],

FRDA patient tissues and primary cells [50,65,66] and FRDA

mouse models [50]. Increased DNA methylation in these cells

further strengthens the hypothesis that expanded GAA repeats

exhibit heterochromatin mediated silencing of FXN gene.

It has been well documented that FRDA patient cells, mouse

models and cell models with reduced frataxin levels exhibit

increased susceptibility to oxidative stress [21,34,60,see review 67],

although the exact mechanism for this effect is yet to be elucidated.

In line with these findings, our YG8R mouse cells showed

significantly reduced cell viability upon the exposure to H2O2 or

FAC and BSO indicating that reduced frataxin levels may

contribute to reduced efficiency of the oxidative stress defence

mechanism. To further investigate the oxidative stress phenotype

in our cells we have assessed the expression levels of a panel of

antioxidant genes and found that Sod2 mRNA expression was

consistently reduced in all three cell types. This data suggest that

part of the toxic mechanism involving oxidative stress in FRDA

may be due to the deficient levels of Sod2 expression as hemizygous

Sod2 (50% expression) mice have been shown to display increased

oxidative damage to DNA and increased incidence of cancer [68].

Our findings are also consistent with previous studies that have

shown significantly decreased Sod2 expression levels in human

primary fibroblasts [55,60] and DRG tissue of YG8R mice [57].

Pgc-1a has been emerged as one of the master regulators of

mitochondrial biogenesis. The role of this gene in FRDA

pathogenesis is controversial as some results have shown down-

regulation of Pgc-1a [54,55], whereas others have shown

upregulation of Pgc-1a mRNA levels [60], in FRDA patient

derived cells. However, FRDA patient fibroblasts with largest

repeat sizes have shown complete loss of Pgc-1a expression in this

latter study [60]. These results have led to the speculation that Pgc-

1a expression may be dependent on several factors including the

length of the GAA repeat size, cell type and age of onset. Our

three YG8R mouse cell types show decreased levels of Pgc-1a
expression, although the most significant reduction was found in

fibroblasts, supporting the notion of cell-type variability. Pgc-1a
activates nuclear-encoded genes required for mitochondrial

biogenesis by co-activating several transcription factors, mainly

NRF-1, NRF-2 and ERRa. Consistent with these findings, it has

been recently reported that YG8R mice have shown deficiency of

Nrf2 expression in the DRG tissue [57]. This downregulation of

Nrf2 is directly correlated with the FXN expression, indicating the

involvement of multiple complex pathways in FRDA disease

progression. Furthermore, our findings support the use of Pgc-1a
or Nrf2 activators as potential FRDA therapeutic strategies.

The deficiency of Fe-S cluster-containing enzyme activities is

another distinct and early hallmark of FRDA [53]. Selective

impairment of MRC complexes I/II/III and aconitase have been

demonstrated in heart biopsies from FRDA patients with

hypertrophic cardiomyopathy [17,52], in lymphocytes [69] and

in mouse models [34,53]. It has also been suggested that frataxin

acts as an iron chaperon in converting oxidative damaged (3Fe-4S)

clusters into active (4Fe-4S) clusters of aconitase [70]. Our YG8R

mouse fibroblasts and differentiated NSCs also showed reduced

levels of aconitase activity, but no difference was detected in the

NSCs, possibly due to the presence of comparatively higher levels

of frataxin expression.

In conclusion, we have developed and characterised novel

model cell culture systems that are derived from FRDA mice that

contain either expanded GAA repeats (YG8R) or normal GAA

repeats (Y47R). We show that the NSCs can differentiate into

neurons, oligodendrocytes and astrocytes. Although the cells

derived from the YG8R mice did not show any GAA repeat

instability, they have displayed FRDA-like molecular phenotypes,

including reduced frataxin expression levels, increased FAST1

levels, increased susceptibility to oxidative stress and reduced

aconitase activity. Furthermore, these cells also exhibit impair-

Figure 10. MMR gene expression levels. The expression levels of MMR genes, Msh2, Msh3, Msh6 and Pms2 were analyzed by qRT-PCR in all three
cell types. Values were expressed relative to the levels of both Gapdh and b2M and in each case all gene expression levels were normalized to the
mean expression levels of Msh2 gene of Y47R cells set at 100%. Two individual cDNA samples were analyzed for each cell type and each reaction was
carried out in triplicate. Error bars represent s.e.m (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0089488.g010
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ments in antioxidant Pgc-1a and MMR gene expression profiles.

These novel NSCs and differentiated NSC cell models can be a

valuable resource for investigating FRDA molecular disease

mechanisms and for preclinical testing of novel FRDA therapies.
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