1,621 research outputs found

    High-yield atmospheric water capture via bioinspired material segregation

    Full text link
    Atmospheric water harvesting is urgently needed given increasing global water scarcity. Current sorbent-based devices that cycle between water capture and release have low harvesting rates. We envision a radically different multi-material architecture with segregated and simultaneous capture and release. This way, proven fast-release mechanisms that approach theoretical limits can be incorporated; however, no capture mechanism exists to supply liquid adequately for release. Inspired by tree frogs and airplants, our capture approach transports water through a hydrogel membrane ``skin'' into a liquid desiccant. We report an extraordinarily high capture rate of 5.50 kgm2d1\text{kg}\,\text{m}^{-2}\,\text{d}^{-1} at a low humidity of 35%, limited by the convection of air to the device. At higher humidities, we demonstrate up to 16.9 kgm2d1\text{kg}\,\text{m}^{-2}\,\text{d}^{-1}, exceeding theoretical limits for release. Simulated performance of a hypothetical one-square-meter device shows that water could be supplied to two to three people in dry environments. This work is a significant step toward providing new resources to water-scarce regions.Comment: 22 pages, 23 figure

    CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells

    Get PDF
    Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell–derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke–induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.This work was supported by a CJ Martin Early Career Fellowship from the Australian National Health and Medical Research Council awarded to R.B.W.; NIH grant F30HL147426 awarded to K.M.A.; NIH grants U01TR001810, R01DK101501, and R01DK117940 awarded to A.A.W.; NIH grants R01HL135142, R01HL137927, and R01HL147148 awarded to M.H.C.; and NIH grants R01HL127200 and R01HL148667 awarded to X.Z

    GAWMerge expands GWAS sample size and diversity by combining array-based genotyping and whole-genome sequencing

    Get PDF
    Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, especially for non-European ancestries. One cost-effective approach to increase sample size is to combine existing cohorts, which may have limited sample size or be case-only, with public controls, but this approach is limited by the need for a large overlap in variants across genotyping arrays and the scarcity of non-European controls. We developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap, and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, imputation, and filtering. We illustrated its ability to control technology driven artifacts and type-I error, as well as recover known disease-associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and enhance discovery for understudied traits and ancestries

    Traveling waves for a model of gravity-driven film flows in cylindrical domains

    Get PDF
    Traveling wave solutions are studied for a recently-derived model of a falling viscous film on the interior of a vertical rigid tube. By identifying a Hopf bifurcation and using numerical continuation software, families of non-trivial traveling wave solutions may be traced out in parameter space. These families all contain a single solution at a ‘turnaround point’ with larger film thickness than all others in the family. In an earlier paper, it was conjectured that this turnaround point may represent a critical thickness separating two distinct flow regimes observed in physical experiments as well as two distinct types of behavior in transient solutions to the model. Here, these hypotheses are verified over a range of parameter values using a combination of numerical and analytical techniques. The linear stability of these solutions is also discussed; both large- and small-amplitude solutions are shown to be unstable, though the instability mechanisms are different for each wave type. Specifically, for small-amplitude waves, the region of relatively flat film away from the localized wave crest is subject to the same instability that makes the trivial flat-film solution unstable; for large-amplitude waves, this mechanism is present but dwarfed by a much stronger tendency to relax to a regime close to that followed by small-amplitude waves

    Structural and Electronic Decoupling of C_(60) from Epitaxial Graphene on SiC

    Get PDF
    We have investigated the initial stages of growth and the electronic structure of C_(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C_(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C_(60) superlattice. We measure a highest occupied molecular orbital–lowest unoccupied molecular orbital gap of ~ 3.5 eV for the C_(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C_(60) and substrate-induced screening as compared to C_(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates

    Conflict of Interest Policies at Canadian Universities: Clarity and Content

    Full text link
    [À l'origine dans / Was originally part of : ESPUM - Dép. médecine sociale et préventive - Travaux et publications]Abstract Discussions of conflict of interest (COI) in the university have tended to focus on financial interests in the context of medical research; much less attention has been given to COI in general or to the policies that seek to manage COI. Are university COI policies accessible and understandable? To whom are these policies addressed (faculty, staff, students)? Is COI clearly defined in these policies and are procedures laid out for avoiding or remedying such situations? To begin tackling these important ethical and governance questions, our study examines the COI policies at the Group of Thirteen (G13) leading Canadian research universities. Using automated readability analysis tools and an ethical content analysis, we begin the task of comparing the strengths and weaknesses of these documents, paying particular attention to their clarity, readability, and utility in explaining and managing COI.This study was supported by a grant from the Institute of Genetics of the Canadian Institutes of Health Researc

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years
    corecore