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a b s t r a c t

Travelingwave solutions are studied for a recently-derivedmodel of a falling viscous filmon the interior of
a vertical rigid tube. By identifying a Hopf bifurcation and using numerical continuation software, families
of non-trivial traveling wave solutions may be traced out in parameter space. These families all contain
a single solution at a ‘turnaround point’ with larger film thickness than all others in the family. In an
earlier paper, it was conjectured that this turnaround point may represent a critical thickness separating
two distinct flow regimes observed in physical experiments as well as two distinct types of behavior in
transient solutions to the model. Here, these hypotheses are verified over a range of parameter values
using a combination of numerical and analytical techniques. The linear stability of these solutions is also
discussed; both large- and small-amplitude solutions are shown to be unstable, though the instability
mechanisms are different for each wave type. Specifically, for small-amplitude waves, the region of
relatively flat film away from the localized wave crest is subject to the same instability that makes the
trivial flat-film solution unstable; for large-amplitude waves, this mechanism is present but dwarfed by
a much stronger tendency to relax to a regime close to that followed by small-amplitude waves.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The flow of falling liquid films is a topic of importance in several
disciplines including biology and engineering. These films have a
free surface whose evolution is governed by the interplay of body
forces (gravity) and surface stresses (due to the surface tension of
the free surface). Numerous modeling and experimental studies
have advanced understanding of these flows in a variety of regimes
corresponding to different parameter values (e.g., Reynolds
number, Bond number, etc.), and in a number of geometrical setups
including (i) along an inclined plane (e.g., [1,2]) and (ii) the exterior
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or interior of a vertical tube (e.g., [3–7]); see also [8]. The cylindrical
geometry of the tube is distinct from the planar case due to the
role of the free surface’s azimuthal curvature in setting the surface
stresses. This geometry is the focus of the current study, where we
further concentrate on the cylinder interior problem. In contrast
with its exterior film counterpart, this setup poses a natural limit to
the thickness of the film, corresponding to cases when the surface
tension azimuthal component drives the free surface all the way
to the cylinder axis. When this happens, plugs of fluid that can fill
sections of the tube are formed, up to the limit when the entire
tube is filled with liquid moving according to the Poiseuille flow
solution of the motion equations.

More specifically, the problem studied here is the gravity-
driven downward flow of a highly viscous liquid film that coats
the interior of a vertical rigid tube. While highly idealized, this
particular setup is of interest due to its potential relevance for
understanding the flow of the thin layer of mucus which lines
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Fig. 1. Snapshots of four experiments with ρ = 0.97 g cm−3 , µ = 129 P, γ = 21.5 dyn cm−1 , and a = 0.5 cm. The film thickness of each panel was measured to be
(a) h0 = 0.223 cm, (b) h0 = 0.256 cm, (c) h0 = 0.295 cm, and (d) h0 = 0.331 cm. (Each snapshot is rotated by 90°with respect to the actual experiment, so that acceleration
due to gravity acts from left to right.)
Source: Reproduced from [7].
human airways. The problem was studied experimentally in [7],
where a fixed volume flux of a high-viscosity silicone oil was fed
through an axisymmetric slit into the interior of a 40 cm long
vertical tube. Once the entire tube was coated with oil, the free
surface of the oil film was observed as it fell down the tube wall.

In these experiments, two distinct flow regimes were observed,
distinguished from one another by a critical film thickness (as
a function of other flow parameters). For relatively thick films,
the free surface was observed to be unstable, with disturbances
growing as they traveled down the tube until they ‘pinched off’
and formed liquid plugs clogging the tube; these plugs continued to
travel downwards, eventually exiting the bottom of the tube. For
thin films, the free surface either did not exhibit any observable
instability growth or showed instabilities that remained small
and did not clog the tube. In all observations, the film flow was
observed to be axisymmetric; see Fig. 1.

Strongly nonlinear models for the axisymmetric flow studied
here have typically been derived by assuming a small ratio of
lengthscales and fall into one of two categories. Thin-film models
rely on a small film thickness compared with the tube radius [3,9],
while long-wave models utilize a small film thickness relative to a
typical wavelength of free-surface disturbances [4,7]. See [10] for
further discussion of this classification.

We next summarize a single-PDE long-wave model recently
derived in [7]. The derivation of the model relies on both the
aforementioned small long-wave aspect ratio and an assumed
small Reynolds number so that inertia may be neglected. The
dimensional form of the model is

µRt = ρgf1(R; a)Rz +
γ

16R
[f2(R; a)(Rz + R2Rzzz)]z, (1)

where z is the independent axial coordinate and R(z, t)denotes the
position of the free surface. Here z is oriented so that gravity acts in
the positive z direction; r = 0 denotes the center of the tube and
r = a denotes the tube wall. Experimental parameters include the
fluid’s molecular viscosityµ, density ρ, and surface tension γ ; g is
acceleration due to gravity. Subscripts will be used throughout the
paper to denote partial derivatives, and the functions fi are given
by

f1(R; a) =
1
2
[R2

− a2 − 2R2 log(R/a)], (2a)

f2(R; a) = −
a4

R2
+ 4a2 − 3R2

+ 4R2 log(R/a). (2b)

The first term on the right-hand side (RHS) of (1) represents
the effects of gravity; the remaining two terms represent the
effects of surface tension acting through the azimuthal and axial
curvatures of the free surface, respectively. Themodel (1) may also
be expressed as a conservation law for the quantity R2,

8µ(R2)t = {f2(R; a)[−ρgR2
+ γ (Rz + R2Rzzz)]}z, (3)

so that the model conserves the volume π(a2 − R2) of the
fluid film. This conservation of volume is one of the features
distinguishing ‘long-wave’ models from most ‘thin-film’ models,
which usually conserve an approximate volume 2πa(a − R) in
this cylindrical geometry. For reference, the model equation is
given in dimensionless form as well in the Appendix, however in
what follows we will use the full dimensional form of the model
equations for the most part.

For each mean film thickness h0 = a − R0, there is a trivial
solution R(z, t) = R0 to (1). This constant free surface is unstable
to long-wave disturbances, consistent with linear stability results
for the governing equations in this and related setups [11–13];
specifically, if a disturbance of the form R = R0+A exp[i(kz−ωt)]
is introduced to the model equation (1), the resulting dispersion
relation is

ω = −
ρg
µ

f1(R0; a)k +
iγ

16µR0


f2(R0; a)(−k2 + R2

0k
4)


. (4)

Thus the flat solution is unstable to a band of small wavenumbers
0 < k < R−1

0 , with the fastest-growing wavenumber given by

km = (
√
2R0)

−1. (5)

The dispersion relation (4) has the same form as that of the well-
studied Kuramoto–Sivashinsky (K–S) equation, first shown to be a
limiting form of a model for film flow down an inclined plane [1,2]
by Sivashinsky and Michelson [14].

When the model (1) is solved numerically using periodic
boundary conditions and initial conditions consisting of a flat free
surface perturbed by a superposition of several small-amplitude
Fourier modes, the initial growth of the disturbances is well
described by (4). As the perturbations grow beyond the weakly
nonlinear regime, solutions exhibit one of two distinct types
of behavior. For relatively thin films, the disturbances saturate
as a series of traveling pulses which undergo various nonlinear
interactions with one another, but generally hold their shape and
propagate approximately as a coherent wave train. For thicker
films, however, the fastest-growing disturbance continues to grow,
apparently accelerated rather than saturated by nonlinearities in
the model. This wave crest grows until its amplitude approaches
the tube radius r = 0, with the latter stages of this growth
occurring very rapidly. Due to the cylindrical geometry present in
the model, as seen in the inverse powers and logarithms of R in
(1), solutions cannot be computed once this crest reaches the tube
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center r = 0 (and the assumptions on which the model is based
break down as well), but the instability appears to grow arbitrarily
close to the center in finite time. These solutions thus suggest
that, for these thicker films, the film tends towards ‘choking’ or
‘clogging’ the tube.

Travelingwave (TW) solutions to themodel (1) were also found
in [7] for the representative case of tube radius a = 0.5 cm
by ‘clipping’ a single pulse from a snapshot of the free surface’s
evolution sufficiently long after the saturation of instabilities and
feeding this wave profile into a boundary value-problem (BVP)
solver. For thicker films whose free-surface instabilities do not
saturate but exhibit unchecked growth, this method obviously
could not be used, but a search for traveling wave solutions for
these thicker films was made by continuation of the thinner-film
TW solutions in parameters like mean film thickness. While many
traveling wave solutions were found using this approach, a critical
film thickness was found to exist; for films thicker than this critical
thickness, no TW solutions were found. A critical film thickness
separating two flow regimes was thus identified for the problem
from three distinct perspectives: (i) the presence or absence of
plug formation in experiments, (ii) the existence or non-existence
of apparent finite-time singularities in the model (1), and (iii)
the existence or non-existence of traveling wave solutions to the
model, respectively.

In [7] it was found that these critical thicknesses were all
in good agreement with one another for a representative tube
radius a = 0.5 cm; in addition, the critical thicknesses as
determined by the physical experiments and transient solutions
to (1) were in good agreement for a variety of tube radii. In
this work, we explore the branching of traveling wave profiles
and existence of critical turnaround points as the mean thickness
varies by observing the traveling waves arise out of a natural Hopf
bifurcation for the flat solution that can be computed analytically.
As a result of this Hopf bifurcation, families of traveling waves
can be easily computed for any tube radius and the critical mean
thickness beyond which the branches cease to exist numerically
approximated via continuation methods. Once again, remarkably
these turnaround points are in very good agreement with the
plug formation observed experimentally in [7]. This agreement is
remarkable for several reasons. For one, several approximations
were made in deriving the model equation, yet the level of
quantitative agreement with the physical experiments was quite
good. In particular, it is somewhat surprising that an asymptotic
modelwhichdepends on a small aspect ratio of length scaleswould
be able to accurately predict plug formation. For another, periodic
boundary conditions were used to solve the model while the
boundary conditions of the experimentwere certainly not periodic.
What is more, the traveling wave solutions used to estimate the
critical values of the parameters distinguishing one regime from
another were of a fixed period (and a different period than that
observed in the experiments) despite the search for solutions over
a wide range of parameter values.

Other models of low-Reynolds number film flows in different
geometries have been shown to have similar finite-time singular-
ities, though the physical interpretation of this behavior is depen-
dent on the problem setup. For example, finite-time singularities in
a thin-filmmodel derived in [1,2] for flows down an inclined plane
are interpreted as indicative of film break-up [15]. The fact that
such break-up is not observed in experiments has partlymotivated
the development of new modeling approaches such as integral
boundary layermodels in, e.g., [16], that consist of coupled systems
of PDEs. These alternate models do not exhibit finite-time singu-
larities, providing improved agreement with experiments. Finite-
time singularities in a thin-film model for flows down the exterior
of a tube [3,17] have been interpreted as indicating drop forma-
tion [18]. This behavior is not limited to thin-film models; other
one-equation models including an exterior-flow long-wave model
that is analogous to the interior-flow model considered here also
exhibit blowup.

In contrast, in the present setup this model behavior appears
to be a good indicator of plug formation in the tube. We note that
the possibility of plug formation provides an important distinction
between interior and exterior flows. At themoment plug formation
occurs in interior flows, the change in the free surface topology
may be expected to render asymptotic models helpless to describe
any subsequent changes in the film flow. Finite-time singularities
in such models may therefore be considered less of a model
shortcoming and more as an additional source of information
about the timing and route to plug formation.

Exploring the mathematical and physical connections between
these three perspectives, i.e. transient solutions to themodel, trav-
eling wave solutions, and physical experiments, is the primary
topic of the current work. We will first discuss in Section 2 the
computational aspects of finding traveling solutions for Eq. (1), in-
cluding locating the critical Hopf bifurcation from the flat solu-
tion, which offers an alternative viewpoint to the task of finding
traveling wave solutions as saturation of the flat solution stability
analysis expressed by the dispersion relation (4). In Section 3, the
correspondence between the turnaround point of solution
branches and the formation of plugs in physical experiments is
studied for a variety of parameter values. The stability of the so-
lutions will be discussed in Section 4. Conclusions and topics for
further work will be discussed in Section 5.

2. Traveling wave solutions

Traveling wave solutions may be found by substituting
R(z, t) = Q (z − ct) into the model equation (1) to obtain a fourth
order ODE in z,

ρgf1(Q ; a)QQz +
γ

16
[f2(Q ; a)(Qz + Q 2Qzzz)]z + cµQQz = 0, (6)

where c is the speed of the wave. Since this is a perfect derivative
however, we can integrate once to obtain

ρgf3(Q ; a)+
γ

16
[f2(Q ; a)(Qz + Q 2Qzzz)] +

cµ
2

Q 2
= K , (7)

where

f3(Q ; a) = −
1
2
a2Q 2

+
3
8
Q 4

−
1
2
Q 4 log

Q
a
,

and the constant of integration K becomes another parameter we
can vary in our simulations.

2.1. Hopf bifurcations

Eq. (7) can be solved exactly for flat solutions, using for instance
the ‘fsolve’ command in Matlab (or by searching for equilibrium
solutions in numerical continuation software such as AUTO or
Matcont). This gives a family of flat states that can then be studied
from the point of view of stability. Unless otherwise stated, the
experimental parameter values ρ = 0.97 g cm−3, µ = 129 P,
γ = 21.5 dyn cm−1 used in [7] will also be used here.

Locating the Hopf bifurcation involves three parameters: speed
c , integration constant K , and the flat solution Q . While there is
an infinite set of these parameter values that solve the equation
for the flat case, we would like a good starting point in order
to find the Hopf point that will evolve into non-trivial traveling
wave solutions. First we find a reasonable value for K by running
the pseudospectral evolution code. Startingwith a quasi-randomly
perturbed flat state, we ran the pseudospectral code for a long
enough time for it to reach its saturated regime of wave trains.
Determining thewave speed,Q ,Qz , andQzz from this data allowsus
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Fig. 2. Equilibrium solution Q = R0 versus wave speed for a = 0.5 cm, with
K = 0.2146 as determined by the pseudospectral code.

to calculate the corresponding integration constant, K , to usewhen
we integrate the 4th order ODE (6). This K value corresponds to the
low amplitude wave trains, not to the flat solution, but it is in the
neighborhood of its corresponding bifurcation value. The fact that
this K value is attained by the time evolution code assures that a
bifurcation search stems from a physical or achievable regime for
the fluid.

Having determined a starting value for K , we are in position to
determine the corresponding equilibrium flat solutions Qf . As z-
derivatives of Qf are zero Eq. (6) reduces to

ρgf3(Qf ; a)+ c
µ

2
Q 2
f = K , (8)

which then fixes the relationship between the remaining parame-
ters Qf and c .

Next, linearizing the 3rd order ODE (7) in terms of these
parameters generates the Jacobian matrix,

J =

 0 1 0
0 0 1

J1(Qf ) −Q−2
f 0

 , (9)

where

J1(Q ) =
16K
γ

d
dQ


1

f2Q


−

8cµ
γ

d
dQ


1
f2


−

16ρg
γ

d
dQ


f3

f2Q 2


+

2Qz

Q 3
. (10)

For a fixed value of K , we sweep through a range of values for
Qf (and hence c , see Fig. 2), evaluating the Jacobian and computing
its eigenvalues at each step. The Jacobian J has one real eigenvalue
and a pair of complex conjugate eigenvalues. The Hopf bifurcation
is determined by the complex pair crossing from negative real
components to positive real components with nonzero speed as
the parameters are varied; see Fig. 2 for K = 0.2146. The same
conclusion about the location of the Hopf point can be obtained
by the alternative method of finding the phase speed c = ω(k)/k
corresponding to the film thickness such that the first Fourier
modes k = ±(R0)

−1 coincide with edge of the flat solution
instability window from (4). From this Hopf bifurcation point, the
AUTO software package (see [19]) is used to continue off of the
equilibrium branch and onto non-trivial traveling waves.

2.2. Traveling waves

The Hopf bifurcation off of flat solutions found by AUTO for the
full ODE system has a zero eigenvalue occurring simultaneously
Fig. 3. Branches of traveling wave solutions showing the maximum film thickness
hmax versus the mean film thickness h0 = a − Q0 for wave with period L = 2π in
a tube radius of a = 0.5 cm. Red and blue ‘×’s indicate representative waves from
the lower and upper branch, respectively; thesewaves are shown in Fig. 4. Black ‘×’
indicates the turnaround point hc . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

with the complex pair crossing the imaginary axis. This so-called
zero-Hopf bifurcation point makes the numerical continuation of
the associated solution branch more complicated, and it becomes
convenient for this purpose to use a slightly smoothed equation

− ϵQzz + ρgf3(Q ; a)+
γ

16
[f2(Q ; a)(Qz + Q 2Qzzz)]

+
cµ
2

Q 2
= K , (11)

where the additional viscosity term with weight ϵ makes the
bifurcation a pure Hopf bifurcation. A similar approach is taken
in the recent work [20], as well as discussed in [21]. Following
the (identical) family of flat solutions for (11) isolates a pure Hopf
bifurcation that gives rise to a family of periodic orbits. Oncewe are
on the periodic branch, we can continue with the limit ϵ → 0 and
truly work with numerical solutions to (7). Numerically, we first
continue in c and the period to find solutions of period L = 2π . This
primarily serves the purpose of comparison with waves observed
in [7], but also allows to fix a reference tube length with which
one can then study variations of other parameters such as the tube
radius.

Continuing off this period 2π solution in c and the integration
constant K , we observe a family of traveling waves that has a
critical ‘turnaround’ point in the mean thickness, hc ; such a branch
and turnaround point are shown in Fig. 3 where hc ≈ 0.225 cm,
and the corresponding maximum thickness of the film at this
turnaround point is hmaxc ≈ 0.32 cm. This family of solutions
thus contains multiple traveling wave solutions for some mean
thicknesses h0 < hc (with all other flow parameters fixed), while
the family of solutions contains no solutions for h0 > hc . Samples
of two wave profiles from Fig. 3 are given in Fig. 4; one ‘upper
branch’ or large-amplitudewavewithhmax > hmaxc , and one ‘lower
branch’ or small-amplitude wave with hmax < hmaxc .

AUTO allows further continuation of the periodic solutions in
the tube radius a. As a result a large family of turnaround points can
be computed simply by continuing nearby curves. However, the
search is complicated by what appears to be a fold bifurcation at
low tube radii (<0.2 cm), requiring the numerical continuation to
be carried out by recomputing the Hopf bifurcations at that radius
and continuing as before.

As an interesting byproduct of the numerical continuation
method, we can locate via further critical bifurcations another
family of traveling waves that have a double hump structure. After
finding the Hopf bifurcation for a smaller radius, a = 0.17 cm,
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Fig. 4. Travelingwave solutions corresponding to the (a) lower branch solution (red ‘×’) and (b) upper branch solution (blue ‘×’) in Fig. 3 plotted as h = a−Q for a = 0.5 cm
and h0 = 0.18 cm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. (a) Families of single and double hump traveling wave solutions for a = 0.17 cm and L = 2π cm. The further right curve (red) corresponds to the family of double
hump waves, while the left curve (blue) corresponds to single hump waves. The ×’s mark the turnaround points. (b) A wave from the single hump family, taken from the
turnaround point where h0 = 0.0435 cm and hmax = 0.08075 cm. (c) A wave from the double hump family, taken from the turnaround point where h0 = 0.0456 cm and
hmax = 0.08500 cm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the corresponding turnaround curve for hmax as a function of
h0 can be computed with the same technique as for the radius
a = 0.5 cm. A new bifurcation point can be detected low on
the turnaround curve, where h0 = 0.01067 cm and hmax =

0.01048 cm, with nearly flat wave. Following the periodic solution
branch downwards towards the perfectly flat solution, the branch
turns back on itself and traces a new turnaround curve upwards.
The waves on this new turnaround curve have two humps instead
of one; see Fig. 5. The family of double hump waves attains a
slightly larger critical hmax, 0.0456 cm as opposed to the single
hump family’s 0.0435 cm. This seems to indicate that the location
of turnaround point depends, besides the period, on the nature
of the traveling wave solution being sought, i.e., whether we are
looking at single hump, two humps,multiple humps, etc. However,
in all cases we have examined, we found that this dependence is
weak, especially in the larger tube radii, a > 0.21 cm. For instance,
in the case above, although there are now two pulses within the
2π domain – which is similar in nature to having consecutive
π periodic single hump waves – the turnaround point differs by
less than 5% with respect to the single hump wave for the same
period. While multiple hump solutions are interesting, in many
applications they are generically less stable than their single hump
counterparts, hence we will focus primarily on analysis of the
single hump solutions in the current work. Similar multiple pulse
branches have also been observed in other fluids models recently,
see for instance [22,23].

The two hump solution turnaround points begin to differ more
significantly in thinner tubes. We conjecture however that there
is an upper bound of all these different turnaround points for a
given period, though we have not followed more than the two
hump solution branch numerically. If this is correct, the physical
significance of the turnaround points we have computed must
Fig. 6. Critical thickness hc associatedwith the turnaround point for a = 0.5 cm for
twelve periods ranging from the Hopf period of 0.219 cm up to 30π cm. This critical
thickness is weakly dependent on period, especially for large periods (beyond L ∼=

8π cm).

possibly be modified to imply that plug formation occurs for mean
thicknesses larger than this supposedly existing upper bound for
turnaround points at a fixed period. It is likewise interesting to
conjecture that such an upper bound exists for all tube radii; while
turnaround points were identified for all tube radii considered
here, we leave further study of this question to future work.

The sensitivity of the critical turnaround point to the period
length of single-hump traveling wave solutions is summarized
in Fig. 6 for a = 0.5 cm. While the turnaround point is a
function of period length, the value of hc from the Hopf period
to a period of 100 cm varies by only 8% of the tube radius a. The
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Fig. 7. Travelingwave solutions for a = 0.5 cmwith critical thickness hc for period
L = 2π (solid red line) and L = 8π (dashed black line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

remarkable agreement between the turnaround points, calculated
here for a variety of periods and tube radii, and the existence
of plugs strengthens the argument that these turnaround points
can be used to predict the long-time behavior of these films in
experiments. The profile for traveling wave solutions at the critical
thickness hc is shown in Fig. 7 for two different periods. Thewaves’
amplitude, base of support, and the thickness away from the crest
are very similar, suggesting that the decrease in critical thickness
as the period length increases appears to be due to the wave’s base
of support remaining fixed while the flat region away from the
crest widens. The thickness away from the crest thus appears to be
the limiting value of turnaround thickness in Fig. 6 for large period
length.

Before turning to this physical interpretation, we close this
section with a comment about the limit L → ∞, which would
of course yield solitary wave solutions as the limit of periodic
traveling waves. As Fig. 6 shows, periodic solutions and their
turnaround point merging upper and lower branches can be
continued by AUTO to large periods, L ∼= 100 cm. This suggests that
solitary traveling wave solutions could exist for model (1), though
we do not pursue this issue here and leave this particular point to
be more fully investigated in the future.

3. Turnaround points: physical interpretation

We next consider the physical interpretation of the critical
turnaround points computed in the previous section. As discussed
in the introduction, two basic types of behavior were seen in the
physical experiments conducted in [7], namely the presence or
absence of plugs in the tube. Fig. 1(b)–(d) shows snapshots of thick
films exhibiting plug formation with a = 0.5 cm; panel (a) shows
a snapshot of a thinner film that displays some instability growth,
but the instabilities do not form plugs prior to exiting the tube.
Numerical solutions to the evolution equation (1) also showed two
types of behavior, namely the presence or absence of a tendency
to form singularities in finite times. An example of each type of
behavior can be seen in Figs. 8–9.

Fig. 8 shows a solution in which the free surface settles
into a series of traveling pulses which, though interacting with
one another, keep roughly constant amplitude and shape. These
interactions are similar to those revealed in numerical studies of
other models for thin films, and systematic coherent-structure
theories have been developed to describe these interactions for
several models of Newtonian films flowing down planes, including
a thin-film model derived in [1], a generalized K–S equation, and
a two-equation model derived in [16]; see, e.g., [24–29]. Likewise,
a discussion of pulse interaction in film flows down the exterior
of a tube is given in [30] for a two-equation model developed
in [31], and we note that it would be interesting to see such
theories developed for film flows down the interior of a tube
considered here. On the other hand, Fig. 9 shows a solution in
Fig. 8. Time snapshots showing the evolution of solutions to Eq. (1) in a periodic
domain. Interfacial profiles h(z, t) are shown successively shifted at time intervals
1t . Profiles are shown in the frame of reference moving with an undisturbed
interface. The scale for h is given on the right axis for the final profile shown.
Acceleration due to gravity acts from left to right; a = 0.5 cm, R0 = 0.2766 cm
and1t ≈ 55 s.
Source: Reproduced from [7].

Fig. 9. Same as Fig. 8 but with R0 = 0.2443 cm,1t ≈ 3.75 s. (For the final profile,
1t ≈ 0.56 s.)
Source: Reproduced from [7].

which the free surface becomes increasingly perturbed, with the
largest instability approaching the center of the tube, apparently
in finite time.

Itwas noticed in [7] that the turnaroundpoint thickness hc com-
puted for a = 0.5 cm and L = 2π cm was very close to both
the minimum film thickness required for plug formation and the
minimum film thickness required for numerical solutions to ex-
hibit unchecked growth. Here, using the traveling wave solutions
computed above, this correspondence between turnaround point
and plug formation is established for a variety of tube radii and pe-
riod lengths. Fig. 10 shows a comparison of the critical turnaround
point calculated in the previous section for six values of tube radius
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Fig. 10. Turnaround points (red open circles) for six values of h0 , and the
corresponding minimum thickness which results in unchecked instability growth
in (1) (black ‘×’s) calculated in [7]. Physical experiments from [7] which exhibited
plugs (closed circles) and no plugs (open triangles) are shown as well. The closed
triangle for a = 0.5 cm denotes an experiment which exhibited plug formation, but
only intermittently. The shaded gray region denotes values of R0 > a corresponding
to a film coating the exterior of the tube. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

with the corresponding experimental results and numerical exper-
iments of [7]. For all of the radii, the three estimates of a turnaround
point for critical thickness are in good agreement.We note that the
small discrepancies noticeable in the graph could be due to a num-
ber of factors, both experimental and numerical, yet these differ-
ences are always within the experimental error bars. For one, since
the film thickness in the physical experiments was measured with
a rather crude approach making use of the weight of the fluid film
and tube together (see [7]), the accuracy of the experimental mea-
surements of the film thickness likely deteriorates with decreasing
tube radius. Secondly, the numerical solutions were run for a sin-
gle extended domain length (40 cm) with periodic boundary con-
ditions and a flat interface perturbedwith several small-amplitude
Fouriermodes;while numerical testing indicated that these results
were fairly robust, this testing was not extensive.

From the comparison with experimental data, we can surmise
that the model’s traveling wave solutions, and their existence
branch in parameter space, have a clear physical interpretation,
yet to make further connection with the physics it is necessary
to establish their mathematical stability. However, before tackling
this issue in the next section, we conclude the current discussion
by pointing out that there are other relevant qualitative differences
that can further classify travelingwave solutions into two different
classes. The model (1) was constructed by integrating the film’s
axial velocity profile across the film; the velocity field (u, w) (in
the (r, z) directions where r is the radial coordinate) can then be
reconstructed from themodel solution and expressed succinctly in
terms of the stream function

u = −∂zΨ , w − c =
1
r
∂r(rΨ ), (12)

where

Ψ =


−

1
4

+
4S
Q 2
(Qz + Q 2Qzzz)

 
1
4r
(a2 − r2)2


(13)

+


Q 2

2
− 8S(Qz + Q 2Qzzz)


×


1
4r
(a2 − r2 + 2r2 log(r/a))


. (14)

Two qualitatively different types of flow within the film are
possible. For relatively small-amplitude waves, the streamlines
of the fluid flow are topologically equivalent to those of the flat
solution; only some fanning and constricting of the streamlines
mirroring the wave profile exists. For relatively high-amplitude
waves, however, a region of recirculation within the wave crest
can exist; this trapped core of fluid essentially rolls along the rest
of the film as the wave propagates down the tube. Fig. 11 shows
an example of each of these scenarios; see [32,7,10,21] for more
on the existence of these trapped cores in this and related models.
Interestingly, the turnaround point does not necessarily appear to
correspond with a transition from waves with trapped cores to
waves with no trapped cores; for most parameter combinations,
this ‘streamline bifurcation’ occurs at a different (generally higher)
point along the family of solutions.

4. Stability studies

In this section, we study stability of our computed traveling
waves through a combination of linearized analysis and time
dependent simulation. In related equations like Allen–Cahn, the
mKdV equation, K–S or in reaction–diffusion equations, a refined
stability analysis for periodic solutions have been developed in
manyworks, see for instance [33–36,20,37–42] just to name a few.
In most cases listed here, the nature of the nonlinearity allows an
in depth ODE analysis to prescribe the structure of the traveling
waves. In the model we are studying here, this kind of analysis is
somewhat hindered by the kind of nonlinearity and its degeneracy
which arises from the curved geometry of the physical setup.

In the wave reference frame Z = z − ct , the substitution
R(z, t) = Q (Z)+ϕ(Z, t) into (1) results in the following linearized
evolution for ϕ,

µϕt =


ρgf1z +

γ

16Q


g1z + g2z −

g3z
Q


ϕ

+


ρgf1 + µc +

γ

16Q
(f2z + g1 + g2)


ϕZ

+


γ

16Q
f2


ϕZZ +


γ

16Q
g4z


ϕZZZ

+


γ

16Q
g4


ϕZZZZ . (15)

Here,

g1 = 2f2QQZZZ ,

g2 = f2,Q (QZ + Q 2QZZZ ),

g3 = f2(QZ + Q 2QZZZ ),

g4 = f2Q 2,

(16)

and f2,Q = ∂ f2/∂Q = 2a4/Q 3
− 2Q + 8Q log(Q/a). With the

separation of variables

ϕ(Z, t) = eλt/µ ψ(Z), (17)

the linearized evolution (15) becomes an eigenvalue problem for λ
and its associated eigenfunction ψ ,

L[Q ]ψ = λψ, ψ(Z + L) = ψ(Z), (18)

with the differential operator L[Q ] defined by the right-hand side
of (15). Eigenvalues of this problem may then be found numer-
ically, and the resulting spectrum can partially assess the linear
stability of the traveling wave solution Q . A more comprehensive
linear stability analysis would free the eigenfunctions ψ from sat-
isfying periodic boundary conditions, as in principle any perturba-
tion of the travelingwave solutionQ should bepermitted in a study
of its stability. However, as we shall see, the restricted class of per-
turbations constructed from the periodic problem (18) is already
sufficient to determine instability of these solutions, although in a



R. Camassa et al. / Physica D 333 (2016) 254–265 261
0.5

0.4

0.3

0.2

0.1

0
0 π/2 π 3π/2 2π

h 
(c

m
)

Z (cm)

0 π/2 π 3π/2 2π

Z (cm)

0.5

0.4

0.3

0.2

0.1

0

h 
(c

m
)

Fig. 11. (a) Lower and (b) upper branch solutions with a = 0.5 cm, L = 2π cm, and h0 ≈ 0.15 cm. Streamlines are plotted in a frame of reference moving with the wave.
Fig. 12. (a) Linearized spectrum around the lower branch solution depicted in
Fig. 4(a) for a = 0.5 cm, L = 2π cm. (b) Same as (a), zooming in for a close-up of
the region around the origin where eigenvalues with positive real parts are located.

markedly different fashion depending onwhetherQ belongs to the
lower or upper branch of solutions.

The spectrum of the resulting linearized operator is computed
using periodic solutions from the desired part of the bifurcation
curve found by AUTO continuation. These solutions are further
refined through the Newton solver ‘nsoli’ in Matlab to ensure
they are as accurate as possible as approximations to actual
solutions of (6). The resulting wave profiles are then entered in a
pseudospectral implementation of the Hill’s method for the linear
operator in (15), and the spectrum is computed using the program
‘eig ’ in Matlab. Almost all traveling wave solutions found by our
methods are linearly unstable; these solutions can be grouped into
two classes: weakly unstable for waves picked along the lower
branch, and strongly unstable for upper branch ones. Interestingly,
the spectrum appears to have no real component eigenvalues right
at the turnaround point where the two branches merge and only
Fig. 13. Same as Fig. 12 but for the upper branch solution depicted in Fig. 4(b).

Fig. 14. The eigenfunction ϕ (solid line) numerically computed to correspondwith
the large, positive real eigenvalue for the upper branch solution Q (dashed line) in
Fig. 13 with a = 0.5 cm. Note that h = a − Q is shown in Fig. 4(b).

one traveling wave profile exists. This wave is hence neutrally
stable, though of course its full stability needs to be assessed by
nonlinear analysis.

The spectrum is presented for a solution from the lower branch
and upper branch in Figs. 12 and 13, respectively. For the lower
branch, there are two pairs of complex-conjugate eigenvalueswith
positive real part; the magnitude of each of these positive real
components is quite small (<10−4). In contrast, for the upper
branch there is one large positive eigenvalue along with one pair
of complex-conjugate eigenvalues with positive real part; each of
these smaller real parts has magnitude less than 10−3. The large
eigenvalue corresponds to the eigenfunction shown in Fig. 14.

The transition from weakly unstable lower branch solutions to
strongly unstable upper branch solutions is depicted in Fig. 15.
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Fig. 15. (a) A portion of the turnaround curve shown in Fig. 3 for a = 0.5 cm. Computed solutions are denoted by an ‘×’. The solution with lowest (highest) hmax is
shown with a bold red (blue) ‘×’; a bold black ‘×’ is used to denote a solution close to the turnaround point. (b) Eigenvalues near the origin for each solution in panel (a).
Arrow depicts the movement of one of the real eigenvalues as hmax increases along the turnaround curve. (c) Maximum real component of the eigenvalues for each solution
in (a, b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The eigenvalues closest to the origin are shown for fourteen
solutions near the turnaround point with a = 0.5 cm and
L = 2π cm in Fig. 15(b); we note that while only a few
eigenvalues of the linearized operator are shown, these include
the eigenvalue with largest real component for each solution. For
solutions which lie on the lower branch, i.e. solutions between the
bold red and black ‘×’s in Fig. 15(a), there is one pair of complex
conjugate eigenvalues with positive real part, one zero eigenvalue,
and one negative real eigenvalue, in addition to other complex
conjugate pairs with negative real part; the real part of these
complex eigenvalues correspond to the growth rates of the flat
solution. (Note that each traveling wave solution always has a zero
eigenvalue corresponding to the eigenfunction ψ = ϕ = QZ .)

Traveling up the lower branch curve towards the turnaround
point, the complex conjugate pair move towards the imaginary
axis, while the negative real eigenvalue moves towards the origin.
As the turnaround point is passed moving further along the curve,
so that the upper branch is reached, the complex conjugate pair
crosses the imaginary axis while the negative real eigenvalue
becomes positive; this positive eigenvalue is not a part of the
flat solution’s spectrum. Continuing along the upper branch, this
positive real eigenvalue grows in magnitude very quickly; by
h0 = 0.18 cm this eigenvalue is approximately 56 (Fig. 13). The
maximum of the real part of the eigenvalues for each solution is
shown in Fig. 15(c); the two branches, i.e. weakly unstable lower
branch solutions and strongly unstable upper branch solutions,
appear to be separated by aneutrally stable travelingwave solution
located at the turnaround point. For further discussion of positive
eigenvalues in other gravity-driven Newtonian film flow models,
including classification of instabilities as absolute or convective,
see, e.g., [25,27–29]. We leave classification of these instabilities
to traveling wave solutions to future work; for a discussion of
instability classification for the flat solution, see [7].

In addition to corresponding to plug formation in experiments,
the turnaround point distinguishes between these two types of
unstable traveling waves. We note that the solution denoted by
the bold black ‘×’ appears to be the best approximation of the
location of this transition in panels (b) and (c), while it appears
to lie slightly below the turnaround point in panel (a). This small
apparent discrepancy is due to having displayed the turnaround
curve as a function of mean film thickness h0; when the curve is
displayed as a function of volume, i.e. R2

0 (not shown), this solution
marked by the bold black ‘×’ is a very good approximation of the
turnaround point.

The stability results are also illustrated with time-dependent
direct numerical simulations of (1), using a pseudospectral code
carefully designed to eliminate the effects of aliasing in this non-
linear equation; see [43,7] for more details. The traveling wave so-
lutions with period L = 2π cm are used as initial conditions; these
initial conditions are not perturbed other than by the presence of
numerical error accumulated during their computation. The time
evolution of solutions to (1) is dominated by a combination of trav-
elingwave pulses and the stability properties of the flat solution. As
shown by the dispersion relation (4), given a film thickness a − R0
and fixed physical parameters ρ, etc., for sufficiently short periods
L < 2π

√
2R0 the flat solution is stable with respect to periodic

perturbations of period L. As L increases, discrete wave numbers
kn = 2πn/L enter the window of instability 0 < k < R−1

0 ,
with n = 1, . . . [L/R0] ([·] denotes integer part). The ensuing in-
crease in unstable degrees of freedom as L increases makes for
increasingly complex dynamics as small perturbations of the flat
solutions evolve and saturate the nonlinear terms governing the
evolution. This saturation eventually assumes the form of a se-
quence of pulses, which in profile appear in Figs. 16 and 17 for pe-
riods 2π and 8π respectively.

This behavior qualitatively resembles that of other models
studied in the literature. In fact, the thin-film, flat-geometry limit
of this model can be reduced to the well-known K–S equation, see
[44,45,21], and the dispersion relation (4) exactly coincides with
that of the K–S equation. Thus, when saturation of the instability
occurs at low-amplitude waves, i.e., the nonlinearity is weak,
the dynamics can be expected to closely resemble that of the
K–S equation, including its chaotic main features. In contrast, the
evolution of larger amplitude waves is more reminiscent of the
dynamics seen in the so-called St. Venant roll waves studied in
[20,37]. There the authors observe that the flat component of the
wave can lead to instability in the form of very small eigenvalues
with positive real part, though in such a case the authors argue
that the stability of the non-flat part of the pulse tends to damp
these instabilities when the pulses are spaced sufficiently close
together; Fig. 18 shows the evolution of a traveling wave solution
for L = 8π cm with larger amplitude than that shown in Fig. 17.

In Fig. 19, the evolution of an upper branch solution is shown,
where the solution with a = 0.5 cm, L = 2π cm, and h0 ≈

0.2 cm has been used as an initial condition in the solver for (1).
Rapid decay in the amplitude of the wave is seen, so that by t =

90 s the upper branch solution has approached a profile close to
that of a lower branch solution; for comparison, an actual lower
branch solution with similar mean thickness is included in the
plots. Consistent with the discussion above, however, this smaller-
amplitude wave continues to evolve with the nearly-flat region
developing visible instability by t = 300 s.

5. Conclusions

This study of traveling wave solutions of a gravity-driven film-
flow model expands on the findings of [7] of a ‘saddle–node’-
type bifurcation of different branches of traveling wave solutions,
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Fig. 16. Snapshots of the evolution of a lower branch traveling wave solution with a = 0.5 cm, L = 2π cm, h ≈ 0.202 cm at (a) t = 2500 s, (b) t = 3000 s, (c) t = 3500 s,
and (d) t = 4000 s. The original traveling wave solution used as the initial condition is shown by the dashed black line. Solutions have been shifted so that the maximum h
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Fig. 17. Same as Fig. 16 but for L = 8π cm; snapshots are shown for (a) t = 400 s,
(b) t = 600 s, (c) t = 800 s, and (d) t = 1000 s.

and provides additional evidence for the physical relevance of the
‘turnaround point’ along each solution branch. This turnaround
point identifies a traveling wave solution of maximum film
thickness for a given branch, and this critical thickness appears
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Fig. 18. Same as Fig. 17 but for h0 = 0.213 cm; snapshots are shown for
(a) t = 400 s, (b) t = 600 s, (c) t = 800 s, and (d) t = 1000 s.

to be a reasonably accurate tool to predict the onset of plug
formation in actual experiments over a fairly wide range of
parameter values. This agreement is remarkable considering both
the different boundary conditions specified in the model and the
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Fig. 19. (a)–(d) Snapshots from the evolution of the upper branch solution with
h0 ≈ 0.2 cm, a = 0.5 cm, and L = 2π cm at (a) t = 2 s, (b) t = 10 s, (c) t = 50 s,
(d) t = 300 s, with the wave shifted so that the crest is located at z = π cm.
The initial condition (dashed blue line) and corresponding lower branch solution
(dashed red line) are also shown. (e) Maximum value of h(z, t) for the evolution
of the upper branch solution for each time t < 450 s. Blue ×’s correspond to
panels (a)–(d). Dashed lines show hmax for the upper branch solution (blue) and the
corresponding lower branch solution (red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

experiments, and the simplifying asymptotic assumptionsmade in
deriving the model.

The study of the stability of these solutions using Hill’s
method shows that all the solutions discussed here are linearly
unstable. The nature of the instability, however, is qualitatively
and quantitatively different for solutions on an upper branch
(large amplitude) than those on a lower branch (small amplitude).
While the linearized operator for solutions along either branch
may contain some eigenvalues with small positive real component
(likely reflecting the instability of the nearly flat region of the
solution away from thewave crest), in all caseswehave analyzed of
upper branch solutions the spectrum of this operator also contains
one large real eigenvalue. Numerical simulations of the evolution
of these large-amplitude waves show early rapid decay to a
close approximation of the corresponding lower branch solution,
followed by the slow instability growth, corresponding to the flat
region of the film, similar to that of the lower branch solution of
equal mean thickness. For low amplitude mean thicknesses, and
hence small amplitude traveling waves, the dynamics of these
solutions and the number of unstable modes corresponding to
each solution is reminiscent of studies of the K–S equation. In
addition, evolution of sufficiently long flat solutions whose mean
is lower than the maximum amplitude set by the turnaround
point results in a train of pulses resembling those from the lower
branch, with amplitudes and pulse widths essentially determined
by mean thickness and period length. An analytic understanding
of the qualitative differences in the evolution of films governed
by our model would likely highlight the stabilizing effects of the
dispersive terms in the governing equation, similarly to the role
played by the KdV component in the studies carried out in [20].

Given its relevance, an analytical expression for the turnaround
point location depending on the model parameters would clearly
be desirable. A possible approach to obtain such a formula could
be offered by focusing on the solitary wave solutions, which, while
not proven to exist for our model, are made plausible by our
continuation of traveling wave solution for increasing periods.
Solitary waves are essentially the tool exploited by the analysis
of [18], thanks to the analytical tools available to determine
homoclinic orbits in dynamical systems of Sil’nikov type. This
is a possible interpretation of the third order ODE system that
determines traveling wave solutions for our model and other
related thin-film equations. However, important differences exist
between the interior problem we have studied and that of the
film coating the exterior of a cylinder of [18]. Non-existence of
solitary waves in that case had been related to finite time blow-
up of solutions, which in turn was taken as the model’s way of
predicting droplet formation. We notice that the thin-film model
used in [18] is in all likelihood preventing the bifurcation structure
with upper and lower branch we have observed, besides the fact
that our interior problem offers the natural upper bound of the
cylinder’s radius to the amplitude growth of waves, in contrast to
the unchecked growth possible for the exterior problem. In fact, it
would be interesting to extend thepresent study to the counterpart
of our model for the exterior problem, developed in [6]. This could
provide further insight on the physical significance of the branched
structure of traveling wave solutions. For instance, it would be
desirable to understand the dynamical origin of this structure,
which could be due to the underlying cylindrical geometry of
the setup. For example, if two-solution branches exist for both
interior and exterior problems, they could represent a balance
of surface tension forces due to the two different curvatures at
play (longitudinal versus radial), and this might occur at different
amplitudes given the different curvatures at the peaks of small
versus large waves.

Further study is also needed for expanding the physical
setups and parameters, such as modeling non-trivial air flow in
the tube, non-perfect cylindrical tubes, inclined tubes, etc., as
well as to further assess the role of traveling waves in actual
fluid transport. However, the tools developed here give a very
simple computational dynamics approach to prediction in the
experiments of [7]. As a result, this study gives some insights into
the role traveling waves play in the physics of viscous fluid flow in
cylindrical geometries and develops tools that will be required to
address more complex physical questions in related problems.
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Appendix. Model in dimensionless form

The dimensionless form of the model equation (1) is given by:

Rt = f1(R; a)Rz +
ϵ

16 Bo R
[f2(R; a)(Rz + ϵ2R2Rzzz)]z, (A.1)

where Bo = ρgh2
0/γ is the Bond number, and where ϵ = h0/λ0 is

an aspect ratio. The scales used to nondimensionalize (1) are

R∗
= R/h0, z∗

= z/λ0, t∗ = tW0/λ0, (A.2)

where h0 = a − R0 is the mean thickness of the fluid film, λ0
is a typical wavelength of a free-surface disturbance, and W0 =

ρgh2
0/µ is the velocity scale, and where stars have been dropped

in (A.1).
Likewise, the dimensionless conservation law form of the

model is

8(R2)t =


f2(R; a)


−R2

+
ϵ

Bo
(Rz + ϵ2R2Rzzz)


z
. (A.3)
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