580 research outputs found

    Horses grown on limited grain rations

    Get PDF
    Cover title.Includes bibliographical references

    Unconventional machine learning of genome-wide human cancer data

    Full text link
    Recent advances in high-throughput genomic technologies coupled with exponential increases in computer processing and memory have allowed us to interrogate the complex aberrant molecular underpinnings of human disease from a genome-wide perspective. While the deluge of genomic information is expected to increase, a bottleneck in conventional high-performance computing is rapidly approaching. Inspired in part by recent advances in physical quantum processors, we evaluated several unconventional machine learning (ML) strategies on actual human tumor data. Here we show for the first time the efficacy of multiple annealing-based ML algorithms for classification of high-dimensional, multi-omics human cancer data from the Cancer Genome Atlas. To assess algorithm performance, we compared these classifiers to a variety of standard ML methods. Our results indicate the feasibility of using annealing-based ML to provide competitive classification of human cancer types and associated molecular subtypes and superior performance with smaller training datasets, thus providing compelling empirical evidence for the potential future application of unconventional computing architectures in the biomedical sciences

    Jet Deflection via Cross winds: Laboratory Astrophysical Studies

    Full text link
    We present new data from High Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma code simulations of the experiments are able to recover the deflection behaviour seen in the experiments. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. Fitting the observed jet deflections to quadratic trajectories predicted by these models allows us to recover a set of plasma parameters consistent with the data. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd

    Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in the Laboratory

    Full text link
    We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a ''magnetic tower'' jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic ''bubble'', confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.Comment: 6 pages, 5 figures. Accepted for publication in Astrophysics & Space Scienc

    An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection

    Get PDF
    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on exploding wire arrays driven in parallel [Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer which forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments. Submitted to Physics of Plasma

    On the structure and stability of magnetic tower jets

    Get PDF
    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic-energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch (MCL) models, magnetic fields dominate only at scales ≲100\lesssim 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.Comment: 16 pages, 11 figures, published in ApJ: ApJ, 757, 6

    Supersonic radiatively cooled rotating flows and jets in the laboratory

    Full text link
    The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z-pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities reaching ~20% of the propagation velocity.Comment: Accepted for publication in Physical Review Letters (16 pages, 5 figures

    The evolution of magnetic tower jets in the laboratory

    Get PDF
    The evolution of laboratory produced magnetic jets is followed numerically through three-dimensional, non-ideal magnetohydrodynamic simulations. The experiments are designed to study the interaction of a purely toroidal field with an extended plasma background medium. The system is observed to evolve into a structure consisting of an approximately cylindrical magnetic cavity with an embedded magnetically confined jet on its axis. The supersonic expansion produces a shell of swept-up shocked plasma which surrounds and partially confines the magnetic tower. Currents initially flow along the walls of the cavity and in the jet but the development of current-driven instabilities leads to the disruption of the jet and a re-arrangement of the field and currents. The top of the cavity breaks-up and a well collimated, radiatively cooled, 'clumpy' jet emerges from the system

    Plasma flows during the ablation stage of an over-massed pulsed-power-driven exploding planar wire array

    Full text link
    We characterize the plasma flows generated during the ablation stage of an over-massed exploding planar wire array, fielded on the COBRA pulsed-power facility (1 MA peak current, 250 ns rise time). The planar wire array is designed to provide a driving magnetic field (80-100 T) and current per wire distribution (about 60 kA), similar to that in a 10 MA cylindrical exploding wire array fielded on the Z machine. Over-massing the arrays enables continuous plasma ablation over the duration of the experiment. The requirement to over-mass on the Z machine necessitates wires with diameters of 75-100 μ\mum, which are thicker than wires usually fielded on wire array experiments. To test ablation with thicker wires, we perform a parametric study by varying the initial wire diameter between 33-100 μ\mum. The largest wire diameter (100 μ\mum) array exhibits early closure of the AK gap, while the gap remains open during the duration of the experiment for wire diameters between 33-75 μ\mum. Laser plasma interferometry and time-gated XUV imaging are used to probe the plasma flows ablating from the wires. The plasma flows from the wires converge to generate a pinch, which appears as a fast-moving (V≈100V \approx {100} kms−1^{-1}) column of increased plasma density (nˉe≈2×1018\bar{n}_e \approx 2 \times 10^{18} cm−3^{-3}) and strong XUV emission. Finally, we compare the results with three-dimensional resistive-magnetohydrodynamic (MHD) simulations performed using the code GORGON, the results of which reproduce the dynamics of the experiment reasonably well.Comment: 14 pages; 14 figure
    • …
    corecore