We present new data from High Energy Density (HED) laboratory experiments
designed to explore the interaction of a heavy hypersonic radiative jet with a
cross wind. The jets are generated with the MAGPIE pulsed power machine where
converging conical plasma flows are produced from a cylindrically symmetric
array of inclined wires. Radiative hypersonic jets emerge from the convergence
point. The cross wind is generated by ablation of a plastic foil via
soft-X-rays from the plasma convergence region. Our experiments show that the
jets are deflected by the action of the cross wind with the angle of deflection
dependent on the proximity of the foil. Shocks within the jet beam are apparent
in the data. Analysis of the data shows that the interaction of the jet and
cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma
code simulations of the experiments are able to recover the deflection
behaviour seen in the experiments. We consider the astrophysical relevance of
these experiments applying published models of jet deflection developed for AGN
and YSOs. Fitting the observed jet deflections to quadratic trajectories
predicted by these models allows us to recover a set of plasma parameters
consistent with the data. We also present results of 3-D numerical simulations
of jet deflection using a new astrophysical Adaptive Mesh Refinement code.
These simulations show highly structured shocks occurring within the beam
similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to
http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd