478 research outputs found
Determining the Size Dependence of Colloidal Gold Nanoparticle Uptake in a Tumor-like Interface (Hypoxic)
AbstractColloidal gold nanoparticles (GNPs) are being used as drug delivery vehicles and radiation dose enhancers in cancer therapy. Oxygen concentration in human tumours is highly heterogeneous with many regions at very low levels of oxygen (hypoxia). A majority of tumours contain regions with oxygen pressure values of less than 0.7% in the gas phase. The purpose of this study was to investigate how the size of the NPs affects their uptake process in a tumour-like hypoxic environment. We used GNPs of diameter 15, 50, and 74nm, and carried out our experiment under 0.2% (hypoxic) and 21% (normoxic) oxygen levels using MCF-7 and HeLa cells. Our results showed that NPs of size 50nm had the highest uptake following prolonged exposure to hypoxia. There was no significant toxicity introduced by NPs under hypoxic conditions. These findings will play a vital role in the optimization of GNP-based therapeutics in cancer treatment
Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells
Diamond nanoparticles (nanodiamonds) have been recently proposed as new
labels for cellular imaging. For small nanodiamonds (size <40 nm) resonant
laser scattering and Raman scattering cross-sections are too small to allow
single nanoparticle observation. Nanodiamonds can however be rendered
photoluminescent with a perfect photostability at room temperature. Such a
remarkable property allows easier single-particle tracking over long
time-scales. In this work we use photoluminescent nanodiamonds of size <50 nm
for intracellular labeling and investigate the mechanism of their uptake by
living cells . By blocking selectively different uptake processes we show that
nanodiamonds enter cells mainly by endocytosis and converging data indicate
that it is clathrin mediated. We also examine nanodiamonds intracellular
localization in endocytic vesicles using immunofluorescence and transmission
electron microscopy. We find a high degree of colocalization between vesicles
and the biggest nanoparticles or aggregates, while the smallest particles
appear free in the cytosol. Our results pave the way for the use of
photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule
deliver
Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells
The impact of nanoparticles (NPs) upon biological systems can be fundamentally associated with their physicochemical parameters. A further often-stated tenet is the importance of NP shape on rates of endocytosis. However, given the convoluted parameters concerning the NP–cell interaction, it is experimentally challenging to attribute any findings to shape alone. Herein we demonstrate that shape, below a certain limit, which is specific to nanomedicine, is not important for the endocytosis of spherocylinders by either epithelial or macrophage cells in vitro. Through a systematic approach, we reshaped a single batch of gold nanorods into different aspect ratios resulting in near-spheres and studied their cytotoxicity, (pro-)inflammatory status, and endocytosis/exocytosis. It was found that on a length scale of ∼10–90 nm and at aspect ratios less than 5, NP shape has little impact upon their entry into either macrophages or epithelial cells. Conversely, nanorods with an aspect ratio above 5 were preferentially endocytosed by epithelial cells, whereas there was a lack of shape dependent uptake following exposure to macrophages in vitro. These findings have implications both in the understanding of nanoparticle reshaping mechanisms, as well as in the future rational design of nanomaterials for biomedical applications
Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Noninvasive Molecular Probing of Embryonic Stem Cell Differentiation
This study reports the use of gold nanoparticle-based surface-enhanced Raman scattering (SERS) for probing the differentiation of mouse embryonic stem (mES) cells, including undifferentiated single cells, embryoid bodies (EBs), and terminally differentiated cardiomyocytes. Gold nanoparticles (GNPs) were successfully delivered into all 3 mES cell differentiation stages without affecting cell viability or proliferation. Transmission electron microscopy (TEM) confirmed the localization of GNPs inside the following cell organelles: mitochondria, secondary lysosome, and endoplasmic reticulum. Using bright- and dark-field imaging, the bright scattering of GNPs and nanoaggregates in all 3 ES cell differentiation stages could be visualized. EB (an early differentiation stage) and terminally differentiated cardiomyocytes both showed SERS peaks specific to metabolic activity in the mitochondria and to protein translation (amide I, amide II, and amide III peaks). These peaks have been rarely identified in undifferentiated single ES cells. Spatiotemporal changes observed in the SERS spectra from terminally differentiated cardiomyocyte tissues revealed local and dynamic molecular interactions as well as transformations during ES cell differentiation
Intracellular SERS nanoprobes for distinction of different neuronal cell types.
Distinction between closely related and morphologically similar cells is difficult by conventional methods especially without labeling. Using nuclear-targeted gold nanoparticles (AuNPs) as intracellular probes we demonstrate the ability to distinguish between progenitor and differentiated cell types in a human neuroblastoma cell line using surface-enhanced Raman spectroscopy (SERS). SERS spectra from the whole cell area as well as only the nucleus were analyzed using principal component analysis that allowed unambiguous distinction of the different cell types. SERS spectra from the nuclear region showed the developments during cellular differentiation by identifying an increase in DNA/RNA ratio and proteins transcribed. Our approach using nuclear-targeted AuNPs and SERS imaging provides label-free and noninvasive characterization that can play a vital role in identifying cell types in biomedical stem cell research
Luminescent Ruthenium(II) Polypyridyl Functionalized Gold Nanoparticles; Their DNA Binding Abilities and Application As Cellular Imaging Agents
The synthesis and photophysical and biological
investigation of Ru(II)-polypyridyl stabilized watersoluble,
luminescent gold nanoparticles (AuNPs) are described.
These structures bind to DNA and undergo rapid
cellular uptake, being localized within the cell cytoplasm and
nucleus within 4 h
Purification of Nanoparticles by Size and Shape
Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions
Application of isothermal titration calorimetry in evaluation of protein–nanoparticle interactions
Nanoparticles (NPs) offer a number of advantages over small organic molecules for controlling protein behaviour inside the cell. Protein binding to the surface of NPs depends on their surface characteristics, composition and method of preparation (Mandal et al. in J Hazard Mater 248–249:238–245, 2013). It is important to understand the binding affinities, stoichiometries and thermodynamical parameters of NP–protein interactions in order to see which interaction will have toxic and hazardous consequences and thus to prevent it. On the other side, because proteins are on the brink of stability, they may experience interactions with some types of NPs that are strong enough to cause denaturation or significantly change their conformations with concomitant loss of their biological function. Structural changes in the protein may cause exposure of new antigenic sites, “cryptic” peptide epitopes, potentially triggering an immune response which can promote autoimmune disease (Treuel et al. in ACS Nano 8(1):503–513, 2014). Mechanistic details of protein structural changes at NP surface have still remained elusive. Understanding the formation and persistence of the protein corona is critical issue; however, there are no many analytical methods which could provide detailed information about the NP–protein interaction characteristics and about protein structural changes caused by interactions with nanoparticles. The article reviews recent studies in NP–protein interactions research and application of isothermal titration calorimetry (ITC) in this research. The study of protein structural changes upon adsorption on nanoparticle surface and application of ITC in these studies is emphasized. The data illustrate that ITC is a versatile tool for evaluation of interactions between NPs and proteins. When coupled with other analytical methods, it is important analytical tool for monitoring conformational changes in proteins
Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy
Gold nanoparticle accumulation in immune cells has commonly been viewed as a side effect for cancer therapeutic delivery;
however, this phenomenon can be utilized for developing gold nanoparticle mediated immunotherapy. Here, we
conjugated a modified CpG oligodeoxynucleotide immune stimulant to gold nanoparticles using a simple and scalable selfassembled
monolayer scheme that enhanced the functionality of CpG in vitro and in vivo. Nanoparticles can attenuate
systemic side effects by enhancing CpG delivery passively to innate effector cells. The use of a triethylene glycol (TEG) spacer
on top of the traditional poly-thymidine spacer increased CpG macrophage stimulatory effects without sacrificing DNA
content on the nanoparticle, which directly correlates to particle uptake. In addition, the immune effects of modified CpGAuNPs
were altered by the core particle size, with smaller 15 nm AuNPs generating maximum immune response. These TEG
modified CpG-AuNP complexes induced macrophage and dendritic cell tumor infiltration, significantly inhibited tumor
growth, and promoted survival in mice when compared to treatments with free CpG
- …