10 research outputs found

    BV score differentiates viral from bacterial-viral co-infection in adenovirus PCR positive children

    Get PDF
    Background and objectives: Adenovirus causes acute respiratory illness that can mimic bacterial infection, making it challenging to differentiate adenoviral infection from adenoviral-bacterial co-infection. A host-protein score (BV score) for differentiating bacterial from viral infection that combines the expression levels of TNF-related apoptosis-induced ligand, interferon gamma-induced protein-10, and C-reactive protein exhibited a negative predictive value (NPV) of 98% in prior studies. Here we evaluate BV score's diagnostic accuracy in pediatrics with adenovirus PCR detection. Methods: This is a sub-analysis of children aged 3 months to 20 years with adenovirus PCR-positive infection recruited prospectively in two previous cohort studies. Reference standard diagnosis (bacterial, viral or indeterminate) was based on expert adjudication. BV score ranges from 0 to 100 and provides three results based on predefined cutoffs: viral or other non-bacterial etiology (0 ≤ score < 35), equivocal (35 ≤ score ≤ 65), and bacterial or co-infection (65 < score ≤ 100). Experts were blinded to BV results. Results: Out of 1,779 children, 142 had an adenovirus PCR-positive nasopharyngeal swab. Median age was 1.2 years (interquartile range 0.6–1.8), 50.7% were male and 52.8% were hospitalized. 12 cases were reference standard bacterial, 115 reference standard viral and 15 were indeterminate. BV score attained sensitivity of 100.0% (no false negatives), specificity of 89.5% (95% confidence interval: 83.2–95.8), and NPV of 100.0% (92.6–100.0). Equivocal rate was 19.7%. Conclusions: BV score accurately differentiated between adenoviral and bacterial-adenoviral co-infection in this cohort of children with PCR-positive adenovirus detection. This performance supports a potential to improve appropriate antibiotic use

    A host-protein based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY) : A double-blind, multicentre, validation study

    No full text
    BACKGROUND: A physician is frequently unable to distinguish bacterial from viral infections. ImmunoXpert is a novel assay combining three proteins: tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon gamma induced protein-10 (IP-10), and C-reactive protein (CRP). We aimed to externally validate the diagnostic accuracy of this assay in differentiating between bacterial and viral infections and to compare this test with commonly used biomarkers. METHODS: In this prospective, double-blind, international, multicentre study, we recruited children aged 2-60 months with lower respiratory tract infection or clinical presentation of fever without source at four hospitals in the Netherlands and two hospitals in Israel. A panel of three experienced paediatricians adjudicated a reference standard diagnosis for all patients (ie, bacterial or viral infection) using all available clinical and laboratory information, including a 28-day follow-up assessment. The panel was masked to the assay results. We identified majority diagnosis when two of three panel members agreed on a diagnosis and unanimous diagnosis when all three panel members agreed on the diagnosis. We calculated the diagnostic performance (ie, sensitivity, specificity, positive predictive value, and negative predictive value) of the index test in differentiating between bacterial (index test positive) and viral (index test negative) infection by comparing the test classification with the reference standard outcome. FINDINGS: Between Oct 16, 2013 and March 1, 2015, we recruited 777 children, of whom 577 (mean age 21 months, 56% male) were assessed. The majority of the panel diagnosed 71 cases as bacterial infections and 435 as viral infections. In another 71 patients there was an inconclusive panel diagnosis. The assay distinguished bacterial from viral infections with a sensitivity of 86·7% (95% CI 75·8-93·1), a specificity of 91·1% (87·9-93·6), a positive predictive value of 60·5% (49·9-70·1), and a negative predictive value of 97·8% (95·6-98·9). In the more clear cases with unanimous panel diagnosis (n=354), sensitivity was 87·8% (74·5-94·7), specificity 93·0% (89·6-95·3), positive predictive value 62·1% (49·2-73·4), and negative predictive value 98·3% (96·1-99·3). INTERPRETATION: This external validation study shows the diagnostic value of a three-host protein-based assay to differentiate between bacterial and viral infections in children with lower respiratory tract infection or fever without source. This diagnostic based on CRP, TRAIL, and IP-10 has the potential to reduce antibiotic misuse in young children. FUNDING: MeMed Diagnostics

    Antibiotic Overuse in Children with Respiratory Syncytial Virus Lower Respiratory Tract Infection

    No full text
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections (LRTI) during the first year of life. Antibiotic treatment is recommended in cases suspected of bacterial coinfection. The aim of this prospective study was to estimate the incidence of bacterial coinfections and the amount of antibiotic overuse in children infected with RSV using expert panel diagnosis. METHODS: Children 1 month of age and over with LRTI or fever without source were prospectively recruited in hospitals in the Netherlands and Israel. Children with confirmed RSV infection by Polymerase Chain Reaction (PCR) on nasal swabs were evaluated by an expert panel as reference standard diagnosis. Three experienced pediatricians distinguished bacterial coinfection from simple viral infection using all available clinical information, including all microbiologic evaluations and a 28-day follow-up evaluation. RESULTS: A total of 188 children (24% of all 784 recruited patients) were positive for RSV. From these, 92 (49%) were treated with antibiotics. All 27 children (29%) with bacterial coinfection were treated with antibiotics. Fifty-seven patients (62%) were treated with antibiotics without a diagnosis of bacterial coinfection. In 8 of the 92 (9%), the expert panel could not distinguish simple viral infection from bacterial coinfection. CONCLUSION: This is the first prospective international multicenter RSV study using an expert panel as reference standard to identify children with and without bacterial coinfection. All cases of bacterial coinfections are treated, whereas as many as one-third of all children with RSV LRTI are treated unnecessarily with antibiotics

    Antibiotic Overuse in Children with Respiratory Syncytial Virus Lower Respiratory Tract Infection

    No full text
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections (LRTI) during the first year of life. Antibiotic treatment is recommended in cases suspected of bacterial coinfection. The aim of this prospective study was to estimate the incidence of bacterial coinfections and the amount of antibiotic overuse in children infected with RSV using expert panel diagnosis. METHODS: Children 1 month of age and over with LRTI or fever without source were prospectively recruited in hospitals in the Netherlands and Israel. Children with confirmed RSV infection by Polymerase Chain Reaction (PCR) on nasal swabs were evaluated by an expert panel as reference standard diagnosis. Three experienced pediatricians distinguished bacterial coinfection from simple viral infection using all available clinical information, including all microbiologic evaluations and a 28-day follow-up evaluation. RESULTS: A total of 188 children (24% of all 784 recruited patients) were positive for RSV. From these, 92 (49%) were treated with antibiotics. All 27 children (29%) with bacterial coinfection were treated with antibiotics. Fifty-seven patients (62%) were treated with antibiotics without a diagnosis of bacterial coinfection. In 8 of the 92 (9%), the expert panel could not distinguish simple viral infection from bacterial coinfection. CONCLUSION: This is the first prospective international multicenter RSV study using an expert panel as reference standard to identify children with and without bacterial coinfection. All cases of bacterial coinfections are treated, whereas as many as one-third of all children with RSV LRTI are treated unnecessarily with antibiotics

    Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia

    No full text
    Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment

    Expert panel diagnosis demonstrated high reproducibility as reference standard in infectious diseases

    No full text
    Objective: If a gold standard is lacking in a diagnostic test accuracy study, expert diagnosis is frequently used as reference standard. However, interobserver and intraobserver agreements are imperfect. The aim of this study was to quantify the reproducibility of a panel diagnosis for pediatric infectious diseases. Study Design and Setting: Pediatricians from six countries adjudicated a diagnosis (i.e., bacterial infection, viral infection, or indeterminate)for febrile children. Diagnosis was reached when the majority of panel members came to the same diagnosis, leaving others inconclusive. We evaluated intraobserver and intrapanel agreement with 6 weeks and 3 years’ time intervals. We calculated the proportion of inconclusive diagnosis for a three-, five-, and seven-expert panel. Results: For both time intervals (i.e., 6 weeks and 3 years), intrapanel agreement was higher (kappa 0.88, 95%CI: 0.81-0.94 and 0.80, 95%CI: NA)compared to intraobserver agreement (kappa 0.77, 95%CI: 0.71-0.83 and 0.65, 95%CI: 0.52-0.78). After expanding the three-expert panel to five or seven experts, the proportion of inconclusive diagnoses (11%)remained the same. Conclusion: A panel consisting of three experts provides more reproducible diagnoses than an individual expert in children with lower respiratory tract infection or fever without source. Increasing the size of a panel beyond three experts has no major advantage for diagnosis reproducibility

    Antibiotic misuse in respiratory tract infections in children and adults—a prospective, multicentre study (TAILORED Treatment)

    No full text
    Respiratory tract infections (RTI) are more commonly caused by viral pathogens in children than in adults. Surprisingly, little is known about antibiotic use in children as compared to adults with RTI. This prospective study aimed to determine antibiotic misuse in children and adults with RTI, using an expert panel reference standard, in order to prioritise the target age population for antibiotic stewardship interventions. We recruited children and adults who presented at the emergency department or were hospitalised with clinical presentation of RTI in The Netherlands and Israel. A panel of three experienced physicians adjudicated a reference standard diagnosis (i.e. bacterial or viral infection) for all the patients using all available clinical and laboratory information, including a 28-day follow-up assessment. The cohort included 284 children and 232 adults with RTI (median age, 1.3 years and 64.5 years, respectively). The proportion of viral infections was larger in children than in adults (209(74%) versus 89(38%), p < 0.001). In case of viral RTI, antibiotics were prescribed (i.e. overuse) less frequently in children than in adults (77/209 (37%) versus 74/89 (83%), p < 0.001). One (1%) child and three (2%) adults with bacterial infection were not treated with antibiotics (i.e. underuse); all were mild cases. This international, prospective study confirms major antibiotic overuse in patients with RTI. Viral infection is more common in children, but antibiotic overuse is more frequent in adults with viral RTI. Together, these findings support the need for effective interventions to decrease antibiotic overuse in RTI patients of all ages
    corecore