179 research outputs found

    On the surface and beyond. Degradation morphologies affecting plant ash‐based archaeological glass from Kafir Kala (Samarkand, Uzbekistan)

    Get PDF
    The study focuses on an assemblage of glass finds from the citadel of Kafir Kala, Uzbekistan, located along one of the major Eurasian branches of the β€œSilk Roads” with a consistent occupation between the 8th and 12th century CE. Glass fragments for this study were selected based on marked surface alterations they showed, with stratified deposits of different thickness and colours. Starting from a preliminary observation under Optical Microscope, fragments were clustered into four main groups based on the surface appearance of the alterations; Scanning Electron Microscopy investigations of the stratigraphy of the alteration products were then carried out, to evaluate micro‐textural, morphological and compositional features. Data from the analyses allowed identifying preferential patterns of development of the various degradation morphologies, linkable to compositional alterations of the glass due to burial environment and the alkali leaching action of the water. Iridescence, opaque weathering (at times associated with black stains), and blackening were identified as recurring degradation morphologies; as all but one sample were made of plant ash‐based glass, results show no specific correlation between glass composition and the occurrence of one or the other degradation pattern, often found together. Framed in a broad scenario, the paper aims to set the basis for the development of a study approach dedicated to the degradation morphologies affecting archaeological glasses, a topic still lacking systematisation and in‐depth dedicated literature

    Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation

    Get PDF
    Apoptosis rather than differentiation is a physiological process during myogenesis and muscle regeneration. When cultured myoblasts were induced to differentiate, we detected an increase in caspase 8 activity. Pharmacological inhibition of caspase 8 activity decreased apoptosis. Expression of a dominant-negative mutant of the adapter protein FADD also abrogated apoptosis, implicating a death ligand pathway. Treatment with TRAIL, but not Fas, induced apoptosis in these myoblasts. Accordingly, treatment with a soluble TRAIL decoy receptor or expression of a dominant-negative mutant of the TRAIL receptor DR5 abrogated apoptosis. While TRAIL expression levels remained unaltered in apoptotic myoblasts, DR5 expression levels increased. Finally, we also detected a reduction in FLIP, a death-receptor effector protein and caspase 8 competitive inhibitor, to undetectable levels in apoptotic myoblasts. Thus, our data demonstrate an important role for the TRAIL/DR5/FADD/caspase 8 pathway in the apoptosis associated with skeletal myoblast differentiation. Identifying the functional apoptotic pathways in skeletal myoblasts may prove useful in minimizing the myoblast apoptosis that contributes pathologically to a variety of diseases and in minimizing the apoptosis of transplanted myoblasts to treat these and other disease states

    CXCR4 Expression in Prostate Cancer Progenitor Cells

    Get PDF
    Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44+/CD133+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy

    IL-24 Inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis

    Get PDF
    Β© 2015 Panneerselvam et al. Background The stromal cell derived factor (SDF)-1/chemokine receptor (CXCR)-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL)-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. Methods Human H1299, A549, H460 and HCC827 lung cancer cell lines were used in the present study. The H1299 lung cancer cell line was stably transfected with doxycycline-inducible plasmid expression vector carrying the human IL-24 cDNA and used in the present study to determine the inhibitory effects of IL-24 on SDF-1/CXCR4 axis. H1299 and A549 cell lines w ere used in transient transfection studies. The inhibitory effects of IL-24 on SDF1/CXCR4 and its downstream targets were analyzed by quantitative RT-PCR, western blot, luciferase reporter assay, flow cytometry and immunocytochemistry. Functional studies included cell migration and invasion assays. Principal Findings Endogenous CXCR4 protein expression levels varied among the four human lung cancer cell lines. Doxycycline-induced IL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 mRNA and protein expression. IL-24 post-transcriptionally regulated CXCR4 mRNA expression by decreasing the half-life of CXCR4 mRNA ( > 40%). Functional studies showed IL-24 inhibited tumor cell migration and invasion concomitant with reduction in CXCR4 and its downstream targets (pAKTS 473 , pmTORS 2448 , pPRAS40 T246 and HIF-1Ξ±). Additionally, IL-24 inhibited tumor cell migration both in the presence and absence of the CXCR4 agonist, SDF-1. Finally, IL-24 when combined with CXCR4 inhibitors (AMD3100, SJA5) or with CXCR4 siRNA demonstrated enhanced inhibitory activity on tumor cell migration. Conclusions IL-24 disrupts the SDF-1/CXCR4 signaling pathway and inhibits lung tumor cell migration and invasion. Additionally, IL-24, when combined with CXCR4 inhibitors exhibited enhanced anti-metastatic activity and is an attractive therapeutic strategy for lung metastasi

    Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.</p> <p>Results</p> <p>Using a combination of <it>in silico </it>and experimental approaches, we identified and characterized novel <it>P</it>. <it>abyssi </it>ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel <it>P</it>. <it>abyssi </it>ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four <it>P</it>. <it>abyssi </it>CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.</p> <p>Conclusions</p> <p>This work proposes a revised annotation of CRISPR loci in <it>P</it>. <it>abyssi </it>and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.</p

    Chemokine Coreceptor Signaling in HIV-1 Infection and Pathogenesis

    Get PDF
    Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis

    Omeprazole Inhibits Proliferation and Modulates Autophagy in Pancreatic Cancer Cells

    Get PDF
    BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and Ξ²-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of pancreatic cancer. Since omeprazole use has already been established in clinical practice these results could lead to new clinical applications
    • …
    corecore