865 research outputs found
A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program
Key Points
Increased FOXO1 is oncogenic in human CD34+ cells and promotes preleukemia transition. FOXO1 is required by AE preleukemia cells for the activation of a stem cell molecular program.</jats:p
Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure
Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure
All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD
Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion
All-cause mortality among people with serious mental illness (SMI), substance use disorders, and depressive disorders in southeast London: a cohort study
<p>Abstract</p> <p>Background</p> <p>Higher mortality has been found for people with serious mental illness (SMI, including schizophrenia, schizoaffective disorders, and bipolar affective disorder) at all age groups. Our aim was to characterize vulnerable groups for excess mortality among people with SMI, substance use disorders, depressive episode, and recurrent depressive disorder.</p> <p>Methods</p> <p>A case register was developed at the South London and Maudsley National Health Services Foundation Trust (NHS SLAM), accessing full electronic clinical records on over 150,000 mental health service users as a well-defined cohort since 2006. The Case Register Interactive Search (CRIS) system enabled searching and retrieval of anonymised information since 2008. Deaths were identified by regular national tracing returns after 2006. Standardized mortality ratios (SMRs) were calculated for the period 2007 to 2009 using SLAM records for this period and the expected number of deaths from age-specific mortality statistics for the England and Wales population in 2008. Data were stratified by gender, ethnicity, and specific mental disorders.</p> <p>Results</p> <p>A total of 31,719 cases, aged 15 years old or more, active between 2007-2009 and with mental disorders of interest prior to 2009 were detected in the SLAM case register. SMRs were 2.15 (95% CI: 1.95-2.36) for all SMI with genders combined, 1.89 (1.64-2.17) for women and 2.47 (2.17-2.80) for men. In addition, highest mortality risk was found for substance use disorders (SMR = 4.17; 95% CI: 3.75-4.64). Age- and gender-standardised mortality ratios by ethnic group revealed huge fluctuations, and SMRs for all disorders diminished in strength with age. The main limitation was the setting of secondary mental health care provider in SLAM.</p> <p>Conclusions</p> <p>Substantially higher mortality persists in people with serious mental illness, substance use disorders and depressive disorders. Furthermore, mortality risk differs substantially with age, diagnosis, gender and ethnicity. Further research into specific risk groups is required.</p
Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ~7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering âŒ4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for âŒ60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
- âŠ