26 research outputs found

    The Confounding Effect of Population Structure on Bayesian Skyline Plot Inferences of Demographic History

    Get PDF
    Many coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several recent studies have shown that the results can be misleading when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences have so far not been addressed and quantified. We simulated DNA sequence data under a variety of scenarios involving structured populations with variable levels of gene flow and analysed them using BSPs as implemented in the software package BEAST. Results revealed that BSPs can show false signals of population decline under biologically plausible combinations of population structure and sampling strategy, suggesting that the interpretation of several previous studies may need to be re-evaluated. We found that a balanced sampling strategy whereby samples are distributed on several populations provides the best scheme for inferring demographic change over a typical time scale. Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by simulations. We recommend that sample selection should be carefully considered in relation to population structure previous to BSP analyses, and that alternative scenarios should be evaluated when interpreting signals of population size change.Danish Council for Independent Research, Laboratoire d’Excellence (LABEX) grant: (ANR-10-LABX-41)

    STR-based genetic structure of the Berber population of Bejaia (Northern Algeria) and its relationships to various ethnic groups

    Get PDF
    Patterns of genetic variation in human populations have been described for decades. However, North Africa has received little attention and Algeria, in particular, is poorly studied, Here we genotyped a Berber-speaking population from Algeria using 15 short tandem repeat (STR) loci D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA from the commercially available AmpF/STR Identifiler kit. Altogether 150 unrelated North Algerian individuals were sampled across 10 administrative regions or towns from the Bejaia Wilaya (administrative district). We found that all of the STR loci met Hardy-Weinberg equilibrium expectations, after Bonferroni correction and that the Berber-speaking population of Bejaia presented a high level of observed heterozygosity for the 15 STR system (>0.7). Genetic parameters of forensic interest such as combined power of discrimination (PD) and combined probability of exclusion (PE) showed values higher than 0.999, suggesting that this set of STRs can be used for forensic studies. Our results were also compared to those published for 42 other human populations analyzed with the same set. We found that the Bejaia sample clustered with several North African populations but that some geographically close populations, including the Berber-speaking Mozabite from Algeria were closer to Near-Eastern populations. While we were able to detect some genetic structure among samples, we found that it was not correlated to language (Berber-speaking versus Arab-speaking) or to geography (east versus west). In other words, no significant genetic differences were found between the Berber-speaking and the Arab-speaking populations of North Africa. The genetic closeness of European, North African and Near-Eastern populations suggest that North Africa should be integrated in models aiming at reconstructing the demographic history of Europe. Similarly, the genetic proximity with sub-Saharan Africa is a reminder of the links that connect all African regions.Instituto Gulbenkian de Ciência, Laboratoire d'Excellence (LABEX) entitled TULIP: (ANR-10-LABX-41)

    Averting Lemur Extinctions amid Madagascar\u27s Political Crisis

    Get PDF
    The most threatened mammal group on Earth, Madagascar’s five endemic lemur families (lemurs are found nowhere else), represent more than 20% of the world’s primate species and 30% of family-level diversity. This combination of diversity and uniqueness is unmatched by any other country—remarkable considering that Madagascar is only 1.3 to 2.9% the size of the Neotropics, Africa, or Asia, the other three landmasses where nonhuman primates occur. But lemurs face extinction risks driven by human disturbance of forest habitats. We discuss these challenges and reasons for hope in light of site-specific, local actions proposed in an emergency conservation action plan

    Can Genetics help unravel the Afroasiatic cradle ?

    No full text
    International audienc

    Data from: Contribution of spatial heterogeneity in effective population sizes to the variance in pairwise measures of genetic differentiation

    No full text
    1. Pairwise measures of neutral genetic differentiation are supposed to contain information about past and on-going dispersal events and are thus often used as dependent variables in correlative analyses to elucidate how neutral genetic variation is affected by landscape connectivity. However, spatial heterogeneity in the intensity of genetic drift, stemming from variations in population sizes, may inflate variance in measures of genetic differentiation and lead to erroneous or incomplete interpretations in terms of connectivity. Here, we tested the efficiency of two distance-based metrics designed to capture the unique influence of spatial heterogeneity in local drift on genetic differentiation. These metrics are easily computed from estimates of effective population sizes or from environmental proxies for local carrying capacities, and allow us to introduce the hypothesis of Spatial-Heterogeneity-in-Effective-Population-Sizes (SHNe). SHNe can be tested in a way similar to isolation-by-distance or isolation-by-resistance within the classical landscape genetics hypothesis-testing framework. 2. We used simulations under various models of population structure to investigate the reliability of these metrics to quantify the unique contribution of SHNe in explaining patterns of genetic differentiation. We then applied these metrics to an empirical genetic dataset obtained for a freshwater fish (Gobio occitaniae). 3. Simulations showed that SHNe explained up to 60% of variance in genetic differentiation (measured as Fst) in the absence of gene flow, and up to 20% when migration rates were as high as 0.10. Furthermore, one of the two metrics was particularly robust to uncertainty in the estimation of effective population sizes (or proxies for carrying capacity). In the empirical dataset, the effect of SHNe on spatial patterns of Fst was five times higher than that of isolation-by-distance, uniquely contributing to 41% of variance in pairwise Fst. Taking the influence of SHNe into account also allowed decreasing the signal-to-noise ratio, and improving the upper estimate of effective dispersal distance. 4. We conclude that the use of SHNe metrics in landscape genetics will substantially improve the understanding of evolutionary drivers of genetic variation, providing substantial information as to the actual drivers of patterns of genetic differentiation in addition to traditional measures of Euclidean distance or landscape resistance

    Comparison of EBSP and simulated population sizes under different structural scenarios.

    No full text
    <p>Comparison of EBSP and simulated population sizes under different structural scenarios.</p

    Three different sampling strategies for real data from the buffalo.

    No full text
    <p><i>Local</i>, <i>pooled</i> and <i>scattered</i> sampling of real D-loop data from 34 African buffalo populations. The replication of each sampling strategy involved random drawing of the appropriate number of samples from demes as explained in the main text.</p
    corecore