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Abstract

Patterns of genetic variation in human populations have been described for decades. However,

North Africa has received little attention and Algeria, in particular, is poorly studied, Here we

genotyped a Berber-speaking population from Algeria using 15 short tandem repeat (STR)

loci D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338,

D19S433,  vWA,  TPOX,  D18S51,  D5S818  and  FGA from  the  commercially  available

AmpF/STR Identifiler kit. Altogether 150 unrelated North Algerian individuals were sampled

across 10 administrative regions or towns from the Bejaia Wilaya (administrative district). We

found that all of the STR loci met Hardy–Weinberg equilibrium expectations, after Bonferroni

correction  and  that  the  Berber-speaking  population  of  Bejaia  presented  a  high  level  of

observed heterozygosity for the 15 STR system (>0.7).Genetic parameters of forensic interest

such as combined power of discrimination (PD) and combined probability of exclusion (PE)

showed values higher than 0.999, suggesting that this set of STRs can be used for forensic

studies. Our results were also compared to those published for 42 other human populations

analyzed with the same set. We found that the Bejaia sample clustered with several North

African populations but that some geographically  close populations,  including the Berber-

speaking Mozabite from Algeria were closer to Near-Eastern populations. While we were able

to  detect  some genetic  structure  among  samples,  we  found  that  it  was  not  correlated  to

language (Berber-speaking versus Arab-speaking) or to geography (east versus west). In other

words, no significant genetic differences were found between the Berber-speaking and the

Arab-speaking populations of North Africa. The genetic closeness of European, North African

and Near-Eastern populations suggest that North Africa should be integrated in models aiming

at reconstructing the demographic history of Europe. Similarly, the genetic proximity with

sub-Saharan Africa is a reminder of the links that connect all African regions.

Keywords:  STR  diversity,  Forensics,  Berber/Arab-speaking  populations,  North  Africa,

Continuity.
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1. Introduction

Global patterns of genetic diversity are becoming increasingly important to reconstruct the

demographic  history of human populations.  While  some regions have received significant

attention, others, like North Africa, have been generally less sampled and less studied. This is

the case for Algeria despite its geographical position linking the Mediterranean area and Sub-

Saharan Africa. Today the Algerian population is composed of two main linguistic groups, the

Berber- and the Arab-speaking populations, and it is usually considered that the majority of

the Algerians descend from Berbers and Arabs (Taïeb, 2004). However, the history of Algeria

and North Africa is rather complex. For instance, the Berber-speaking region of Bejaia has

witnessed many successive invasions and conquests that caused important cultural, linguistic

and religious reshuffles among which the most important is probably the Arab conquest that

started in the seventh century. Chronologically, the region was submitted to the influence of

the Romans (33 BC), the Vandals (429 AC), the Byzantines (533 AC), the Arabs (647 AC),

the Spanish (1510 AC), the Ottomans (1555 AC) and the French (1832 AC) (Cote, 1991;

Laporte, 2004). In addition to these migrations, there have been internal reshuffles, with the

introduction of Jewish and sub-Saharan African populations. At the fall of Andalusia (1610

AC), many of its expelled citizens came to establish settlements in Bejaia (see Gaid, 2008).

Thus, while Berbers are likely to be the most ancient inhabitants of the region, gene flow,

immigration  and  language  switching  may  have  obscured  the  relationships  between

neighboring  or  distant  populations.  Genetic  data  could  therefore  be  useful  to  identify

connections between populations speaking different languages today within Algeria or at a

wider geographical scale. For instance, Henn et al. (2012), using genomic data, estimated that

the North African populations are likely of Berber origin with substantial shared ancestry with

the Near East and, to a lesser extent, eastern and western sub-Saharan Africa and Europe.
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Though the number of studies on North Africa is relatively limited, there have been important

studies using various markers that have contributed to the anthropogenetic characterization of

North African Berber populations. These studies have focused on the GM immunoglobulin

allotypic system (Dugoujon et al., 2004; Coudray et al., 2004; Coudray et al., 2006), others on

mitochondrial DNA (Fadhlaoui-Zid et al., 2004; Ennafaa et al., 2009, Coudray et al., 2009),

the Y chromosome (Arredi et al., 2004), autosomal microsatellites (STR) (Bosch et al., 2000;

Bosch et al.,2001;  Coudray et al., 2006;  Coudray et al., 2007a; khodjet-el-khil et al., 2008, El

Ossmani, 2010, Khodjet-El-Khil et al., 2012, Gaibar et al., 2012), SNP (Henn et al., 2012),

and Alu Sequences (Gonzalez-Pérez  et al., 2003).  Very few studies have been carried out on

Algerian Berber populations (Bosch et al., 2001; Achilli et al., 2005; Lefevre-Witier et al.,

2006; Coudray et al., 2009;  Pereira et al., 2010, Bekada et al., 2013 ). 

The  present  study  is  part  of  a  wider  project  on  the  anthropogenetic  characterization  of

Algerian populations.  In this paper we used 15 independent autosomal STR loci to genotype

a sample of 150 individuals  from the Berber-speaking population of the Bejaia  wilaya to

provide data on allele frequencies distribution and forensic parameters. The allele frequencies

were exploited, using multidimensional scaling (MDS) and tree analysis (UPGMA), to assess

the relationships between the Bejaia population and 42 other populations from North Africa,

Sub-Saharan Africa, the Middle-East, Europe, Asia and South America. Analysis of molecular

variance  (AMOVA)  was  performed  to  assess  the  genetic  structure  of  17  populations

(including Bejaia). A STRUCTURE analysis was also conducted.

2. Materials and methods
2.1.  Population

Buccal swab samples were collected from unrelated healthy Berber-speaking donors (n=150

individuals,  300  gametes)  from  the  Bejaia  area  in  North  Algeria  (Fig.1),  after  written

informed consent was obtained. Donors provided genealogical information for at least three
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previous  generations.  Samples  were  collected  in  accordance  with  the  ethical  guidelines

specified by the institutions involved in this study. 

Figure 1

2.2.  DNA extraction and amplification

Genomic DNA extraction was performed on the saliva samples with the QIAamp DNA Mini

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations.  Fifteen

independent  autosomal  tetranucleotide  STR  loci  (see  Butler,  2006),  namely  D13S317,

D16S539,  D2S1338,  vWA,  TPOX,  D18S51,  D5S818,  FGA,  D8S1179,  D21S11,  D7S820,

D19S433, CSF1PO, TH01 and D3S1358, were coamplified in a multiplex PCR amplification

reaction.  Amplification  was  performed  in  a  GeneAmp  PCR  system  9700  (Applied

Biosystems,  Foster  City,  CA)  using  the  AmpF/STR  Identifiler  PCR  Amplification  Kit

(Applied  Biosystems,  Foster  City,  CA)  according  to  the  manufacturer’s  specifications

(Applied Biosystems,  1998).

2.3.  Electrophoresis and genotyping

DNA fragments were separated by multi-capillary electrophoresis on an ABI Prism 3130xl

Genetic  Analyzer  using  the  ABI  GeneScan 500 LIZ internal  size  standard  as  a  basis  for

comparison. Fragment sizes were obtained using the software GeneMapper® v3.2 (Applied

Biosystems, Foster City, CA) and alleles were identified by comparison to an allelic ladder

supplied by the manufacturer (Applied Biosystems, Foster City, CA).

2.4.  RelPair analysis
To detect intra-population pairs of close relatives, we used the program RelPair Version

2.01 (Epstein et al., 2000). Each population was separately analyzed following the suggested

settings of Pemberton et al. (2013), namely with a critical value set to 100 and a genotyping

error rate of 0.008. When related individuals were identified, one of them was discarded from

the  analysis.  In  order  to  minimize  the  number  of  individuals  removed,  we  preferentially

omitted the individuals present in two or more related pairs while favoring those with less
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missing data. We applied this analysis to all the populations for which we managed to obtain

genotype data (See table 1 for populations’ codes). The number of individuals retained out of

the initial number for each population is 116/150 (BJ), 40/44 (MB), 46/48 (SM), 94/105 (AN),

90/104 (BH), 86/98 (SW), 87/99 (MA), 86/100 (CA), 73/80 (AM), 57/63 (BM), 57/59 (SH). 
2.5.  Statistical and phylogenetic analysis

Allele frequencies, expected (He) and observed (Ho) heterozygosity (Nei, 1987) and the exact

test  of  Hardy-Weinberg  equilibrium  (Levene,  1949;  Guo  and  Thompson,  1992)  were

computed using the Arlequin Software Version 3.5.1.2 (Excoffier  and  Lischer, 2010). The

forensic parameters (matching probability (MP), power of discrimination (PD), polymorphism

information content (PIC), probability of exclusion (PE) and typical paternity index (TPI))

were  calculated  using  Powerstats  Version  1.2

(http://www.promega.com/geneticidtools/powerstats/). 

The expected number of genotypes was computed as Ng = Π(kj
2+kj)/2 and the number of

pairwise haplotype allele associations as Na =  [(∑kj)2 -  ∑kj
2]/2 (where k is the number of

alleles at a considered locus and j the allele index).  Bonferroni correction (Weir, 1996) was

applied to adjust P values in Hardy-Weinberg assumptions (P = 0.05/15 = 0.0033 where 15 is

the number of loci).

In order to determine the genetic  relationship of our sample with other ethnic groups, we

compared it  to  42 populations  from Europe,  Asia,  America and Africa using homologous

microsatellite loci (Table 1).  Pairwise uncorrected Fst distances between the 43 populations

were used to perform a standard non-metric MDS using Statistica 8.0 (StatSoft, 2008) and

infer  a  UPGMA  tree  using  POPTREE2  (Takezaki  et  al.,  2010)  available

at:http://www.med.kagawa-u.ac.jp/~genomelb/takezaki/poptree2/index.html.  Tree  robustness

was evaluated using Bootstrap tests on 1000 permutations (Felsenstein, 1985). UPGMA rather

than NJ method was used because it was more bootstrap-supported than the NJ one. Note that

the trees were simply used as a graphical representation of the genetic distances computed.
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They cannot be seen as a reliable representation of the relationships between populations due

to the fact that such trees ignore the existence of gene flow, which is a crucial  feature of

human populations (Barbujani and Chikhi, 2007).

 The MDS and Tree analyses were performed on all the 15 loci (including those with missing

data)  as  well  as  after  removing  those  with  missing  data  (i.e.  D16S539,  D2S1338  and

D19S433).

The significance of discriminance between groups in the MDS plot was determined using

one-way  ANOVA followed  by  unequal  HSD  (Honestly  Significant  Difference)  test  as

implemented in Statistica 8.0 (StatSoft, 2008). The homogeneity of variances was checked

using Levene’s and Cochran’s tests. When required, equality of variances was achieved by

dividing data by the standard deviation values and comparing the standardized data.

Locus-by-locus  allele  frequency  based  AMOVA was  performed  using  Arlequin  v.3.5.1.2:

Three plans of grouping were tested: (1) Grouping in relation to spoken language (Group 1 =

Arab-speaking  populations   (RB, DM, MA, CA, AM, SH) ;  Group 2 = Berber-speaking

populations  (BJ,  MB,  SM,  AN,  BH,  AZ,  KM,  TN,  LY,  SW,  BM));   (2)  Grouping  in

accordance to geographical distribution (Group 1 = Western North African populations (SM,

AN, BH, RB, AZ, KM, DM, AM, BM, SH); Group 2 = Central North African populations

(BJ,  MB,  TN,  LY);  Group  3  =  Eastern  North  African  populations  (SW,  MA,  CA);  (3)

Grouping in relation to UPGMA clustering (Group 1 = BJ, AZ, RB, LY, AN, BH, KM; Group

2 = MA, DM, SW, CA, Group 3 = MB, SM, SH, AM, BM; Group 4 = TN) (see Tab. 1 for

population  codes).  An  analysis  of  population  structure  was  also  carried  out  using  the

STRUCTURE software  (Pritchard et al., 2000) but since our data were uninformative and did

not lead to any clearly identifiable genetic clusters, the results are presented as supplementary

material.
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The correlations between genetic (uncorrected Fsts) and geographical distances and between

initial and final MDS distances were evaluated using Mantel test (Mantel, 1967; Smouse et

al.,  1992),  and  the  fixation  indices  were  tested  using  the  permutation  procedure  (1000

iterations), as implemented in Arlequin 3.5.1.2.

Table 1

3. Results
Observed  heterozygosity  (Ho),  expected  heterozygosity  (He)  and  Hardy-Weinberg

equilibrium tests (Ph) estimated on the 116 individuals of the Bejaia population, are given in

Table 2 (See Supplementary Table 1 for allele frequencies).  Altogether, for the 15 loci, there

were a total of 140 alleles among which 56 (40%) were rare (frequency < 0.05).The highest

observed  frequencies  were  43.1% for  TPOX  (allele  8),  37.93% for  D5S818  (allele  12),

34.05% for  D7S820  (allele  10),  32.75% and  31.462% for  D13S317  (alleles  11  and  12,

respectively), 30.17% for both CSF1PO (alleles 11) and D19S433 (allele 13). Each of the 15

loci showed a high level of polymorphism as expressed by the numbers and frequencies (<

0.95) of alleles per locus. The number of alleles per locus varied from 6 to 15 alleles with a

mean of 9.33±2.58. The observed heterozygosities varied from 0.84 (D2S1338 and FGA) to

0.66 (TPOX) with a mean value of 0.77±0.05. No significant departure from Hardy-Weinberg

equilibrium after Bonferroni correction (p < 0.0033) was detected for all loci.

The  power  of  discrimination  (PD),  the  probability  of  excluding  paternity  (PE)  and  the

polymorphic  information  content  (PIC)  are  displayed  in  Table  2.  PD ranged  from 0.911

(D19S433) to 0.975 (D2S1338),  PE from 0.388 (TPOX) to 0.624 (D2S1338 and FGA) and

PIC from 0.740 (D19S433) to 0.900 (D2S1338 and FGA). All the 15 STR loci were highly

polymorphic (PIC>0.7). The combined power of discrimination and combined probability of

exclusion  showed  values  higher  than  0.999.  With  a  PIC>0.8,  seven  of  the  fifteen  loci

(D21S11, D7S820, D3S1358, D2S1338, VWA, D18S51 and FGA) can be considered as very
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informative for genetic personal identification (with a combined PE=0,987). For the 15 loci (6

to 15 alleles per locus) the computed number of possible genotypes was 7.11x1024. 

Table 2

The standard non-metric multidimensional scaling (MDS) based on  Fst distances (15 loci)

split  the  17  North  African  populations  including  Bejaia  (Table  1)  into  two  main  groups

significantly  discriminated  (Fig.  2  A),  one  (North  Africa  1,  of  11  populations  including

Bejaia) close to the European populations, and the other (North Africa 2, of 5 populations),

close to the Arabian Peninsula populations. As to Tunisia (TN), it behaved as outgroup to all

other  groups  (Fig.  2  A).  The  population  of  Bejaia  (BJ)  went  with  the  North  Africa  1

populations. Its closest neighbors are Lybia (LY), Rabat (RB) and Azrou (AZ) of Morocco, all

geographically close to Algeria (Fig. 2 A and B). The North African populations appeared to

be the most heterogeneous in comparison with other regions groups included in this analysis

(Fig.  2  A and  B).  Another  MDS  (Not  shown)  based  on  12  loci  (after  removing  those

containing  missing  data,  namely  D16S539,  D2S1338  and  D19S433)  gave  roughly  same

results  as above except  that  only MB (Mozabites)  and CA (Copt  Adaima) went  with the

Arabian peninsula populations.

Fig. 2

The UPGMA tree inferred using the  Fst distances between the 43 populations (Fig. 3) was

congruent  with  the  MDS results  (Fig.  2)  and  exhibited  higher  bootstrap  values  than  the

neighbor-joining (NJ) tree (not shown,). However, most of the deepest nodes showed very

low bootstrap values connecting reasonably well supported clusters. This tree emphasized the

heterogeneity revealed by the MDS for the North African populations but the low bootstrap

values suggest that caution is required in interpretation. The group containing BJ, AZ, RB, LY,

AN, BH and KM appears as a sister cluster of that regrouping European and the three Middle

East populations (LB, IR and IQ) but many topologies could explain the data and this mostly

suggests that connections exist between all these populations. Four other populations, MA,
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DM, SW and CA, exhibit longer branch but no clear clustering. As to MB, SM, SH, AM and

BM, they formed a sister cluster to that constituted by the Arabian Peninsula populations (DB,

OM, SA and YE), but again the low bootstrap values suggest caution. TN still behaved as an

out-group to all other North African populations, hence confirming its isolated position in the

MDS plot.

Fig. 3

Locus-by-locus AMOVA revealed no significant difference between the Berber- and Arab-

speaking groups, with  Fct values that varied from -0.00246 to 0.00104 and percentages of

variation from 0.02 to 0.25%. Similarly, the three geographical groups did not exhibit strong

signals  of  differentiation  with  Fct  values  that  varied  from  -0.00097  to  0.00454  and

percentages  of  variation  from  0.01  to  0.45%.  Significant  differences  between  these

geographical groups were revealed only for D8S1197 and TH01 and no significant correlation

(R =  -  0.089,  P =  0.68)  between  genetic  distances  (Fst)  and  geographical  distances  was

detected by the Mantel test. Groupings defined according to the UPGMA tree (Fig. 3) showed

similarly low  Fct values and percentages of variation of -0.00062-0.00689 and 0.01-0.69%

respectively.  For this  grouping, significant  differences  were observed for 8 out of 15 loci

(Table  3):  D8S1197,  D7S820,  CSF1PO,  D3S1358,  TH01,  D16S539,  TPOX  and  FGA.

However,  for all  the three plans of grouping (spoken language,  geographical  location and

cluster  affiliation),  AMOVA revealed  highly  significant  differences  between  populations

within each the groups and for all loci (Supplementary Table 2).

Table 3

The Fst distances between the 17 North African populations (supplementary table 3) suggest

that the closest populations to Bejaia were AZ and AN (Berber- speaking populations from

Morocco)  with  Fst  =  0.005  and  Fst  =  0.006,  respectively;  whereas  the  most  distant

populations  from Bejaia  were MB (Berber-speaking from Central  South Algeria)  and TN
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(Berber-speaking from Tunisia) both with Fst = 0.029. The closest populations to each other

were BJ (Bejaia), AZ (Azrou) and AN (Asni) with  Fst = 0.005-0.006, and the most distant

populations were CA (Copt Adaima) and TN (Tunisia) with  Fst = 0.052. Altogether these

values were relatively low.

4. Discussion

These results constitute the first data reported on genetic diversity of the Bejaia population.

The 15 STR loci were highly polymorphic with a significant proportion (40%) of rare alleles

(Tab. 2 and ST. 2). The power of discrimination (0.911-0.975), the probability of exclusion

(0.388-0.624) and the polymorphic information content (0.74-0.90) (Tab. 2) were high with

combined  PD and  PE  values  higher  than 0.999.  As expected,  the  most  polymorphic  loci

(PIC>0.8) were also the most discriminating. Altogether these results strongly support the use

of this set of genetic markers for forensic personal identification and paternity testing in the

Bejaia  region.

Regarding  population  structure,  the  different  analyses  provided  concordant  results  but

exhibited  also slightly  different  levels  of discrimination.  The STRUCTURE and AMOVA

analyses identified little genetic structure across North Africa and between major linguistic or

geographical  groupings.  The MDS and  Tree  analyses  (Figs.  2  and 3)  confirmed  this  but

identified possible subgroups. For instance, some populations, such as MB (Mozabites), SM

(Berbers  from  South  Morocco),  SH  (Sahrawis),  AM  (Arabs  from  Morocco)  and  BM

(Northern Morocco Berbers),  appeared closer  to  the Arabian  peninsula populations,  while

others, including Bejaia (BJ), Lybia (LY), Asni (AN), Bouhria (BH) (Figs. 2 and 3), appeared

closer to European and other Middle East (Lebanon, Iran and Iraq) populations. However, the

main result is that the different populations are slightly differentiated from each other but the

differentiation  exists  both  among  geographically  close  or  distant  populations  and  among

populations speaking the same or a different language.
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The  genetic  heterogeneity  of  North  African  populations  with  more  or  less  affinities  with

Middle East, Europe and Sub-Saharan Africa has been suggested by authors using mtDNA

(Plaza et al., 2003; Coudray et al., 2009), Y-chromosome DNA (Arredi et al., 2004; Capelli et

al., 2006), STR markers (Capelli et al., 2006; El Ossmani et al., 2010) and SNPs (Botigué et

al., 2013; Henn et al., 2012). In some studies, a West-to-East gradient, ranging from West

Sahara to the Middle East has been described, which we could not detect in the present study,

probably due to the limited number of markers or populations used. As suggested by the

results of Henn et al. (2012), if larger numbers of populations and markers were sampled from

North Africa and the neighboring regions (Europe, Middle-East and Sub-Saharan), one can

expect  a  continuous  complex  with  multi-polar  gradients  between  the  various  ancestries

admitted to North African populations (Maghrebi = Berber, Sub-Saharan, Middle-Eastern and

European), as suggested by Serre and Pääbo (2004).

While  we did  not  find a  clear  geographical  pattern,  we can  note  that  some geographical

structure appear when the two dimensions of Figure 2 are considered separately. Indeed, the

North  African  populations  (including  Tunisia)  are  distributed  as  a  gradient  between  Sub-

Saharan and European groups according to dimension 1 and as another gradient between Sub-

Saharan and Arabian Peninsula groups. In relation to dimension 1, Sub-Saharan, North Africa

2 (including Mozabites) and Arabian Peninsula populations are confounded. This suggests

that a finer geographical sampling and a larger number of markers would be necessary to

identify the regions through which gene flow connected all these regions. 

At a smaller geographical scale and  based on the MDS and tree analyses (Figs. 2-3 and Tab.

4), the closest neighbors of the Bejaia population (BJ) were Azrou (AZ), Rabat (RB), Lybia

(LY), Asni (AN), Bouhria (BH) with genetic distances (Fst) lower than 0.01. The Mozabite

(MB) and the Tunisian populations (TN) were more distant from the Bejaia population (both

with Fst=0.029) despite their geographical closeness and the shared Berber language. The out
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layer position of the Tunisian Chenini population (Figs. 2 and 3) can be attributed to genetic

drift due to the small size of the sampled population as proposed by  Khodjet-El-Khil et al.

(2008) and Bentayebi et al. (2014). 

These  observations  illustrate  the  absence  of  correlation  of  genetic  distances  with  both

geographical distances and the spoken language demonstrated by the AMOVA and Mantel

tests (Tab. 2). The absence of correlation between genetic and geographical distances at this

geographical scale may be due to population relocations, isolations and genetic drift. Indeed,

most studies that have shown that genetic distances are correlated with geographical distances

(Ramachandran  et  al.,  2005;  Lao et  al.,  2008) were performed at  large  geographic  scale.

Studies carried out at smaller scale (within regions such as North Africa) are likely more

influenced by population relocations and isolations (Ramachandran et al., 2005).

No significant genetic differences were found in this study between the Berber- and the Arab-

speaking  populations  (Tab.  3).  This  lack  of  differentiations  between these  two groups  of

populations  have also been found by several  studies using classical  markers (Bosh et  al.,

1997),  Alu insertion polymorphism (Coma et al., 2000), Y chromosome (Bosh et al., 2001),

mtDNA (Fadhlaoui-Zid, 2004) and autosomal STRs (Bosh et al., 2000; Khodjet el khil et al.,

2008 and 2012).  This  suggests  that  either  the  presence  of  Arab-speaking groups in  north

Africa was mostly a cultural  process,  with limited  gene flow between Arabs and Berbers

(Bosh et al, 2000), or that these populations were genetically very similar when they met.

Our results show that language boundaries are not correlated with genetic distances for North

African populations,  probably due to the fact  that  the Arabisation is  recent  in the region.

However, this is not necessarily a general rule since several authors found correlation between

language  boundaries  and genetic  differentiation  (Barbujani  and Sokal,  1990;  Chen  et  al.,

1995).   
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SNP-based  STRUCTURE  analysis  (730,000  sites)  of  7  North  African  populations  in

comparison with populations  from Middle East  (Qatar),  Europe (Tuscan and Basque)  and

Sub-Saharan  Africa  (6  populations)  has  revealed  a  putative  autochthonous  North  African

ancestry (referred to as Maghrebi = Berber ancestry component) decreasing in frequency from

Western Sahara eastward to Egypt (interrupted only by the isolated Tunisian Berber Chenini

population) with a parallel and equal increase of the Middle Eastern and European ancestry

components,  with lesser and irregular Sub-Saharan influence (Henn et al., 2012). Our STR-

based STRUCTURE analysis did not retrieve this  east-to-west ancestry gradient in North

African populations (SF. 1), and did not detect the genetic heterogeneity suggested by MDS,

phylogenetic  and AMOVA (Figs.  2-3 and Table 3) analyses.  This  may be due to the low

number of markers used in our study (15 STR) and/or the sample size of the populations

analyzed. As demonstrated by Pritchard et al., 2000, the accuracy of inferences improves with

sample size, number of loci, and degree of divergence between populations. Our results are in

agreement with previously reported observation (Bosch et al., 2000, Khodjet-El-Khil et al.,

2008 and 2012).

 Altogether our results show that the language spoken today may not reflect the history of the

populations, with several Arab-speaking populations being Berbers who shifted their language

after the Arab conquest. Another possibility is that genetic drift in some of them has led to

significant differences in allele frequencies which blurred the historical relationships. Also,

admixture and gene flow between Arab-speaking and Berber-speaking population may have

contributed  to  the  present-day  situation  where  linguistic  and  genetic  distances  are  less

correlated than they perhaps were in the past.

In this study, we do not wish to make strong statements and draw conclusions on these issues.

Our aim was to identify useful markers for forensic studies and quantify genetic diversity in

the Bejaia area compared to other previously analyzed populations. In order to reconstruct the
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history of the Bejaia population we would need a better geographical sampling of Algeria and

North Africa. We would also need to apply more complex and advanced statistical methods

that those used here. In particular, it would be interesting to better understand the relationships

between north Africa and the Andalusians of Moroccan origin who came to settle around

Bejaia after the fall of Andalusia in 1610 (see Gaid, 2008). Similarly it would be interesting to

quantify the impact of the various invaders of the Bejaia region during history. Historical texts

and the genetic closeness of the Bejaia population to its neighbours found here suggests that

these contributions were probably limited but it would still be interesting to quantify them

using  genomic  approaches  and  inferential  methods  such  as  Approximate  Bayesian

Computation  (ABC, Beaumont,  2010).  One could for  instance  test  whether  it  is  true that

Berbers were little impacted by external gene flow as a consequence of their taking refuge in

difficultly accessible mountains. More populations and more different markers must be used

before drawing decisive conclusions.

While it is not new to state that spoken languages do not constitute a reliable criterion of

ethnic origin, our results show that it is also true in North Africa between Berber-speaking and

Arab-speaking  populations.  This  suggests  that  genomic  studies  using  Mozabites  as

representative  of  Berber-speaking  populations  should  perhaps  be  regarded  as  very

approximate. Interestingly the genetic heterogeneity of the North African Berber populations

together  with  their  relative  closeness  to  the  European  and  Middle  Eastern  populations

revealed here suggest that these populations should probably be more integrated in models

aiming at understanding the recent demographic history of Europe, including both historical

and prehistoric events such as the Neolithic transition.
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