19 research outputs found

    Genetic variability of macroalgae of the genus Cystoseira in the Gulf of Naples and analysis of the associated molluscs community

    Get PDF
    The brown macroalgae of the genus Cystoseira are amongst the most important ecosystem engineering species along rocky coasts of the Mediterranean Sea establishing structurally complex and diversified habitat. Over the last few decades the disappearance of Cystoseira species has been recorded in wide geographical area as a consequence of anthropogenic impacts. In the Gulf of Naples a recent study to outline historical changes in macroalgal diversity highlighted a drastic decrease of Cystoseira species in the intertidal zones. The decline seems to be largely related to the habitat destruction. In order to assess the consequences of the current process of Cystoseira population fragmentation in the Gulf of Naples at species, population and community level and to provide tools for restoration and coastal management strategies, a multi-approach has been used. The diversity of the genus Cystoseira along the coasts of the Gulf of Naples has been investigated at species, genetic and ecosystem level. The species have been genetically characterized through the analysis of the plastidial psbA gene. Eight microsatellites and the RADSeq, a next-generation sequencing method, have been employed to test their usefulness for connectivity and population genetic studies. Overall Cystoseira associations in the Gulf of Naples show different pattern of genetic variability among and within the species. Cystoseira amentacea and Cystoseira crinita are more variable in terms of polymorphic sites and number of haplotypes compared to Cystoseira compressa and this seems to be related to the evolutionary history of these species rather than to their resilience to the environmental conditions. The molluscs community associated with three Cystoseira species have been characterized and the different pattern of associated diversity have been evaluated. The analysis at community level highlighted the importance of Cystoseira species as nursery for the recruitment of molluscs since only juvenile stages were found. Although the dominance of the bivalve Mytilus galloprovincialis, it is possible to identify some differences in the pattern of association of molluscs community. The three Cystoseira stands harbor a species-rich malacofauna assemblage, a total of 53 mollusc species were identified. The present study outlines the importance of using a multi-approach in the analysis of diversity at different scales of investigation. Moreover the results from the present study might be taken as an incentive for a series of protection and management strategies towards these important habitat forming species

    Syntopic Cystoseira taxa support different molluscan assemblages in the Gulf of Naples (southern Tyrrhenian Sea)

    Get PDF
    Brown macroalgae belonging to the genus Cystoseira (Fucales: Sargassaceae) are canopy-forming organisms the recent decline of which at a basin and local scale has been widely documented, which urgently calls for research to fill knowledge gaps and support new and effective measures for protection. We, hereby, characterised the molluscan assemblages associated with three Cystoseira taxa (C. amentacea, C. compressa and C. crinita) from Ischia Island (Italy, Tyrrhenian Sea), and tested whether different congeneric taxa may syntopically support a different biota. In particular, these assemblages were compared among three Cystoseira species, between two times of sampling (June–July 2015 and June–July 2016), and among six sites in terms of multivariate structure (identity and relative abundances of constituting taxa combined, and presence–absence composition), as well as for synthetic measures of diversity, including the total richness of taxa, the exponential Shannon index, and the reciprocal Simpson index. In total, 24736 molluscan individuals were collected, overall belonging to 52 taxa. The majority of the identified species included micrograzers and filter feeders, which is in agreement with similar previous studies. The composition of associated molluscan assemblages, which was mainly represented by juvenile individuals, differed among the three Cystoseira species, suggesting that even congeneric taxa do not support an analogous benthic fauna. The present findings have shedded light on the molluscan biota associated with Cystoseira taxa in the Gulf of Naples and strengthened the importance of such habitat-forming macroalgae in structuring the local infralittoral invertebrate biodiversity and as a nursery for species-specific associated molluscs

    Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives

    Get PDF
    Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications

    Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments from Bagnoli-Coroglio Bay on different life stages of the sea urchin Paracentrotus lividus

    Get PDF
    In marinas and harbours, the accumulation of pollutants in sediments, combined with poor exchange of water with the open sea, poses a major environmental threat. The presence of photosynthetic organisms and the related oxygen production, however, may alleviate the negative effects of environmental contamination on heterotrophic organisms, enhancing their physiological defences. Furthermore, possible transgenerational buffer effects may increase the ability of natural populations to face environmental stress. Here we tested the occurrence of transgenerational effects on larvae of the sea urchin Paracentrotus lividus, whose parents were exposed, during the gametogenesis, to contaminated sediments subject to two temporal patterns of water re-suspension events and normal- (90%) vs. super-saturated (200%) levels of O2. The study site was Bagnoli-Coroglio (Gulf of Naples, southern Tyrrhenian Sea), a historically polluted brownfield and Site of National Interest for which environmental restoration options are currently under exploration. Larvae from different adult populations were significantly, although not linearly, affected by the interaction of all factors to which parents were exposed, at both 24h and 48h post fertilization. Specifically, the exposure of larvae to elutriates from contaminated sediments determined a developmental delay, a reduction in size and an increased percentage of abnormalities in all larval populations independently of their parental exposure. On the contrary, larvae from parents exposed to contaminated sediments, when reared in clean filtered sea water, succeeded in developing until the echinopluteus stage after 48h, with size and abundance comparable to those of larvae from control parents. Pre-exposure of parents to contaminated sediments did not successfully buffer the negative effects of elutriates on their offspring, and no positive effects of ‘super-saturated’ levels of O2 in response to contaminants were observed, suggesting that the Bagnoli-Coroglio area is currently not suitable for the re-stocking or re-introduction of this species

    Marine alien species in Italy: A contribution to the implementation of descriptor D2 of the marine strategy framework directive

    Get PDF
    The re-examination of marine alien species or Non-indigenous species (NIS) reported in Italian Seas by December 2018, is here provided, particularly focusing on establishment success, year of first record, origin, potential invasiveness, and likely pathways. Furthermore, their distribution is assessed according to marine subregions outlined by the European Union (EU) Marine Strategy Framework Directive: Adriatic Sea (ADRIA), Ionian Sea and Central Mediterranean Sea (CMED), and Western Mediterranean Sea (WMED). In Italy, 265 NIS have been detected with the highest number of species being recorded in the CMED (154 species) and the WMED (151 species), followed by the ADRIA (143). Most of these species were recorded in more than one subregion. The NIS that have established stable populations in Italian Seas are 180 (68%), among which 26 have exhibited invasive traits.Among taxa involved, Macrophyta rank first with 65 taxa. Fifty-five of them are established in at least one subregion, mostly in the ADRIA and the CMED. Crustacea rank second with 48 taxa, followed by Polychaeta with 43 taxa, Mollusca with 29 taxa, and Pisces with 28 taxa, which were mainly reported from the CMED. In the period 2012-2017, 44 new alien species were recorded, resulting in approximately one new entry every two months. Approximately half of the NIS (~52%) recorded in Italy have most likely arrived through the transport-stowaway pathway related to shipping traffic (~28% as biofoulers, ~22% in ballast waters, and ~2% as hitchhikers). The second most common pathway is the unaided movement with currents (~19%), followed by the transport-contaminant on farmed shellfishes pathway  (~18%). Unaided is the most common pathway for alien Fisshes, especially in CMED. Escapes from confinement account for ~3% and release in nature for ~2% of the NIS. The present NIS distribution hotspots for new introductions were defined on the first recipient area/location in Italy. In ADRIA the hotspot is Venice which accounts for the highest number of alien taxa introduced in Italy, with 50 newly recorded taxa. In the CMED, hotspots of introduction are the Taranto and Catania Gulfs, hosting 21 first records each. The Strait of Sicily represents a crossroad between the alien taxa from the Atlantic Ocean and the Indo-Pacific area. In the WMED, hotspots of bioinvasions include the Gulfs of Naples, Genoa and Livorno.This review can serve as an updated baseline for future coordination and harmonization of monitoring initiatives under international, EU and regional policies, for the compilation of new data from established monitoring programs, and for rapid assessment surveys.

    Investigation of the molecular mechanisms which contribute to the survival of the polychaete Platynereis spp. under ocean acidification conditions in the CO2 vent system of Ischia Island (Italy)

    Get PDF
    The continuous increase of CO2 emissions in the atmosphere due to anthropogenic activities is one of the most important factors that contribute to Climate Change and generates the phenomenon known as Ocean Acidification (OA). Research conducted at the CO2 vents of Castello Aragonese (Ischia, Italy), which represents a natural laboratory for the study of OA, demonstrated that some organisms, such as polychaetes, thrive under acidified conditions through different adaptation mechanisms. Some functional and ecological traits promoting tolerance to acidification in these organisms have been identified, while the molecular and physiological mechanisms underlying acclimatisation or genetic adaptation are still largely unknown. Therefore, in this study we investigated epigenetic traits, as histone acetylation and methylation, in Platynereis spp. individuals coming from the Castello vent, and from a nearby control site, in two different periods of the year (November-June). Untargeted metabolomics analysis was also carried out in specimens from the two sites. We found a different profile of acetylation of H2B histone in the control site compared to the vent as a function of the sampling period. Metabolomic analysis showed clear separation in the pattern of metabolites in polychaetes from the control site with respect to those from the Castello vent. Specifically, a significant reduction of lipid/sterols and nucleosides was measured in polychaetes from the vent. Overall results contribute to better understand the potential metabolic pathways involved in the tolerance to OA

    The challenge of setting restoration targets for macroalgal forests under climate changes

    Get PDF
    Este artículo contiene 10 páginas, 5 figuras, 1 tabla.The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.This study was funded by the EASME–EMFF (Sustainable Blue Economy) Project AFRIMED (http://afrimed-project.eu/, grant agreement N. 789059), supported by the European Community.Peer reviewe

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives

    No full text
    Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications
    corecore