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Abstract: Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able
to colonize a wide array of environments. In addition to their fundamental role as diazotrophs,
they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various
biological and ecological functions to be further investigated. Among all the identified species,
cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms
such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates.
These symbioses have been demonstrated to dramatically change the cyanobacteria physiology,
inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in
cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals
and activate silenced pathways. Drug discovery studies demonstrated that those molecules have
interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses
in marine environments, considering them not only as diazotrophs but taking into consideration
exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and
the candidate biotechnological value for pharmaceutical and nutraceutical applications.

Keywords: cyanobionts; diazotroph; secondary metabolites; animal interactions; prokaryotes; bioac-
tive molecules; infochemicals

1. Introduction: Cyanobacteria and Their Symbiotic Associations

Cyanobacteria are a wide and diversified phylum of bacteria capable of photosynthesis.
They are found in symbiosis with a remarkable variety of hosts, in a wide range of environ-
ments (Figure 1). Symbiotic relationships concern advantages and disadvantages for the
organisms involved. Symbiosis, indeed, can be advantageous for only one of the involved
organisms (commensalism, parasitism), or for both (mutualism) [1]. Symbiotic interactions
are widespread and involve organisms among life domains, in both Eukaryota and Prokary-
ota (Archaea and Bacteria). Among prokaryotes, various species have been demonstrated
to be associated with invertebrates such as sponges [2,3], corals [4–7], sea urchins [8], ascid-
ians [9,10], and mollusks [11–13]. In addition, symbiotic relationships between bacteria and
various microorganisms such as Retaria [14,15], Myzozoa [16], Ciliophora, and Bacillario-
phyceae [17] were investigated in the frame of the peculiar N2 fixing process performed
by various associated prokaryotes. In fact, cyanobacteria are able to perform nitrogen
fixation and, among all the symbiotic interactions they are able to establish, the nitrogenase
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products represent the major contribution to the partnership [18]. Nitrogen-fixing organ-
isms are often called diazotrophs and their diazotroph-derived nitrogen (DDN) gives their
hosts the advantage to populate nitrogen-limited environments [19,20]. Cyanobacterial
symbionts (also named cyanobionts) are active producers of secondary metabolites and
toxins [21], able to synthesize a large array of bioactive molecules, such as photoprotective
and anti-grazing compounds [4,22]. In addition, cyanobionts have the advantage to be
protected from environmental extreme conditions and from predation/grazing. In parallel,
hosting organisms grant enough space to cyanobionts for growing at low competition
levels. Several investigations demonstrated an influence of host organisms on the produc-
tion of cyanobiont secondary metabolites, as in the case of the symbiotic interaction of
Nostoc cyanobacteria with the terrestrial plant of Gunnera and Blasia genera [23]. Indeed,
changes in the expression of secondary metabolites, as in the cases of the cyanobacterial
nostopeptolide synthetase gene and the altered secretion of various nostopeptolide variants,
were recorded in Nostoc punctiforme according to the presence of the host [24]. Changes
in the metabolic profiles have probably a clear role in the formation of cyanobacterial
motile filaments (hormogonia) and, most probably, they affect the infection process and the
symbiotic relationship itself [24]. This suggests that cyanobacterial secondary metabolites
may play a key role in host–cyanobacterium communications.

There are lines of evidence that cyanobionts produce novel compounds of interest to
pharmaceutical research [25,26], exhibiting cytotoxic and antibacterial activities. Some of
these molecules are produced by cyanobacteria only in a symbiotic relationship, as in the
case of polyketide nosperin (Figure 2) [27].

Cyanobacteria are capable of establishing various types of symbiosis, with variable
degrees of integration with the host, and probably symbiosis emerged independently with
peculiar characteristics [28–30]. Symbionts are transferred to their hosts by a combination of
vertical and horizontal transmission, with some strains passed down from ancestral lineage,
while others are acquired by the surrounding environment [31]. However, cyanobacteria
are less dependent on the host than other diazotrophs, such as rhizobia, due to the presence
of specialized cells (i.e., heterocysts) and a cellular mechanism to reduce the oxygen con-
centration in the cytosol [32]. Nostoc species are heterocystic nitrogen-fixing cyanobacteria,
producing motile filaments called hormogonia, and are considered the most common
cyanobacteria in symbiotic associations [33,34]. The ability of diazotrophs cyanobacteria to
fix nitrogen through various oxygen-sensitive enzymes, such as molybdenum nitrogenase
(nifH), vanadium nitrogenase (vnfH), and iron-only nitrogenase (anfH), is a key point to
fully understand the relationships between cyanobionts and their hosts [28].

Multicellular organisms coevolved with a plethora of symbiotic microorganisms.
These associations have a crucial effect on the physiology of both [35] and, in some cases,
the host-associated microbiota can be considered as a meta-organism forming an inti-
mate functional entity [36]. This means that there are coevolutive factors that led to the
evolution of signals, receptors, and infochemicals among the organisms involved in sym-
biosis. Host–symbionts communication, based on this complex set of dose-dependent [37]
and evolutionarily evolved [38] infochemicals, influences many physiological aspects of
symbiosis; some examples are the microbiota composition, defensive mechanisms, develop-
ment, morphology, and behavior (Figure 3) [39]. The main interactions occurring between
cyanobacteria and host organisms are summarized in Table 1.
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Figure 3. Ecological relevance of cyanobacteria in symbioses. Cyanobacteria symbioses have an important role in nutrient
supply and energy supply, such as diazotrophy or photosynthesis. Cyanobacteria can also produce bioactive molecules
that protect the host (i.e., anti-grazing compounds). In addition, the host can induce metabolic variation in cyanobacteria;
indeed, several organisms are able to produce chemoattractants and hormogonia-inducing factors that allow symbiosis
establishment and persistence.

Table 1. Cyanobacteria and hosts involved in symbiotic interactions.

Host Cyanobacteria Interaction Ref.

Microalgae (or photosynthetic protists)
Bacillariophyta—Rhizosolenia,
Hemiaulus, Guinardia and
Chaetoceros

Richelia intracellularis and
Calothrix rhizosoleniae Nitrogen fixing [18,40]

Bacillariophyta—Climacodium
frauenfeldianum Crocosphaera watsonii Nitrogen fixing [41]

Bacillariophyta—Streptotheca
and Neostrepthotheca Crocosphaera watsonii Nitrogen fixing [42]

Solenicola setigera and
Bacillariophyta—
Leptocylindrus
mediterraneus

Synechoccus sp. Nitrogen fixing and photosynthesis [43,44]

Haptophyta—Braarudosphaera
bigelowii

Candidatus Atelocyanobacterium
thalassa

Nitrogen fixing. Cyanobacterium lack
in oxygen-evolving photosystem II
(PSII), RuBisCo for CO2 fixation, and
tricarboxylic acid (TCA)

[45–49]
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Table 1. Cont.

Host Cyanobacteria Interaction Ref.

Non-photosynthetic protists
Dinoflagellates Synechococcus and Prochlorococcus Nitrogen fixing [50,51]
Tintinnids, Dinoflagellates,
Radiolarians, Synechococcus Nitrogen fixing [51,52]

Macroalgae
Ahnfeltiopsis flabelliformis Acaryochloris marina Not reported [53]
Acanthophora spicifera Lynbya sp. Nutrient supply [54]

Codium decorticatum Calothrix, Anabaena and
Phormidium Nitrogen fixing [55,56]

Seagrasses
Thalassia testudinum unidentified Carbon fixation [57,58]
Cymodocea rotundata Calothrix, Anabaena Nitrogen fixing [59]

Sponge
Petrosia ficiformis Halomicronema metazoicum Not reported [60]
Petrosia ficiformis Halomicronema cf. metazoicum Production of secondary metabolites [61]
Petrosia ficiformis Cyanobium sp. Production of secondary metabolites [61]
Petrosia ficiformis Synechococcus sp. Production of secondary metabolites [61]
Petrosia ficiformis Pseudoanabaena sp. 1 Production of secondary metabolites [61]
Petrosia ficiformis Pseudoanabaena sp. 2 Production of secondary metabolites [61]
Petrosia ficiformis Leptolyngbya ectocarpi Production of secondary metabolites [61]
Petrosia ficiformis Undetermined Oscillatoriales Production of secondary metabolites [61]
Petrosia ficiformis Aphanocapsa feldmannii Food supply [62,63]
Chondrilla nucula Not classified Feeding [63]

Dysidea herbacea Oscillatoria spongeliae Defensive ecological
role—production of toxic compounds [64,65]

Leucetta microraphis Not classified Defensive ecological
role—production of toxic compounds [66]

Ptilocaulis trachys Not classified Defensive ecological
role—production of toxic compounds [66]

Cnidaria
Acropora hyacintus and A.
cytherea Synechococcus and Prochlorococcus Nitrogen fixing [67]

Montastraea cavernosa Synechococcus and Prochlorococcus Nitrogen Fixing and Photoprotective
or photosynthesis [4]

Acropora millepora Not classified Nitrogen Fixing [68–70]

Porites astreoides Chroococcales, Nostocales,
Oscillatoriales and Prochlorales Nitrogen Fixing [6]

Acropora muricata Not classified Not reported [69]
Pocillopora damicornis Not classified Not reported [69]
Isopora palifera Chroococcidiopsis - Chroococcales Nitrogen Fixing [71]

Montipora flabellate and M.
capitate

Fischerella UTEX1931;
Trichodesmium sp.; Lyngbya
majuscule; Cyanothece sp.;
Gloeothece sp.; Synechocystis sp.;
Myxosarcina sp.; Leptolyngbya
boryana; Chlorogloeopsis sp.;
Calothrix sp.; Tolypothrix sp.;
Nostoc sp.; Anabaena sphaerica.

Nitrogen Fixing [7]

Desmophyllum dianthus Plectonema terebrans Opportunistic feeding strategy [72]
Caryophyllia huinayensis Plectonema terebrans Not reported [72]

M. cavernosa, M. franksi and
Diploria and Porites genus

Anabaena, Synechococcus, Spirulina,
Trichodesmium, Lyngbya,
Phormidium and Chroococcales
cyanobacterium

Nitrogen Fixing Photoprotective
compounds [4,73–76]
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Table 1. Cont.

Host Cyanobacteria Interaction Ref.

Ascidians
Didemnum, Lissoclinum,
Diplosoma and Trididemnum Prochloron and Synechocystis Secondary metabolites production [77,78]

Botryllus schlosseri and
Botrylloides leachii Synechococcus related Secondary metabolites production [79]

Lissoclinum patella Prochloron didemmi Carbon and ammonia fixing;
Oxidative stress protection [80–82]

Lissoclinum patella Acaryochloris marina Not reported [83]

Trididemnum solidum Synechocystis trididemni Production of biologically active
molecules [84,85]

2. Protists

Photosynthetic eukaryotes are the product of an endosymbiotic event in the Pro-
terozoic oceans, more than 1.5 billion years ago [86,87]. For this reason, all eukaryotic
phytoplankton can be considered an evolutive product of symbiotic interactions [87] and
the chloroplast, as the remnant of an early symbiosis with cyanobacteria [86]. Nowadays,
the associations among these unicellular microorganisms range from simple interactions
among cells in close physical proximity, often termed “phycosphere” [88], to real ecto-
and endosymbiosis. The study of these associations is often neglected, partially because
symbiotic microalgae and their partners show an enigmatic life cycle. In most of these
partnerships, it is unclear whether the relationships among partners are obligate or facul-
tative [89]. The symbiotic associations between cyanobacteria and planktonic unicellular
eukaryotes, both unicellular and filamentous, are widespread, in particular in low-nutrient
basins [89]. It is assumed that cyanobacteria provide organic carbon through photosyn-
thesis, taking advantage of the special environmental conditions offered by the host. In
contrast, some single-celled algae are in symbiotic association with diazotrophic cyanobac-
teria, providing nitrogen-derived metabolites through N2 fixation [90]. This exchange is
important for nitrogen acquisition in those environments where it represents a limiting
factor, both in terrestrial and in aquatic systems, as well as in open oceans [91]. In fact,
in marine environments, cyanobacteria are associated with single-celled organisms such
as diatoms, dinoflagellates, radiolarians, and tintinnids [52,92]. The exchange of nitrogen
between microalgae and cyanobacterial symbionts, although important, is probably flaked
by other benefits such as the production of metabolites, vitamins, and trace elements [49,93].
In fact, available genomic sequences indicate bacteria, archaea, and marine cyanobacteria
as potential producers of vitamins [94], molecules fundamental in many symbiotic relation-
ships. Moreover, about half of the investigated microalgae have to face a lack of cobalamin,
and other species require thiamine, B12, and/or biotin [95,96]; these needs may be satisfied,
in many cases, by the presence of cyanobionts [97].

The first case described of marine planktonic symbiosis was represented by the diatom
diazotrophic associations (DDAs) among diatoms and filamentous cyanobacteria provided
of heterocysts [98]. Although this kind of interaction is the most studied, little is known
about the functional relationships of the symbiosis. Recent studies are mainly focused on
the symbiotic relationships between the diazotroph cyanobacteria Richelia intracellularis
and Calothrix rhizosoleniae with several diatom partners, especially belonging to the genera
Rhizosolenia, Hemiaulus, Guinardia, and Chaetoceros [18,40]. The location of the symbionts
varies from externally attached to partially or fully integrated into the host [41]. Indeed, it
has been demonstrated through molecular approaches that morphology, cellular location,
and abundances of symbiotic cyanobacteria differ depending on the host and that the sym-
biotic dependency and the location of the cyanobionts R. intracellularis and C. rhizosoleniae
seems to be linked to their genomic evolution [99]. In this regard, it was demonstrated
a clear relationship between the symbiosis of diatom–cyanobacteria symbiosis and the
variation of season and latitude suggesting that diatoms belonging to the genus Rhizosole-
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nia and Hemiaulus need a symbiont for high growth rates [40]. The reliance of the host
seems closely related to the physical integration of symbionts: endosymbiotic relation-
ships are mainly obligatory, while ecto-symbiosis associations tend to be more facultative
and/or temporary [89]. Another interesting cyanobacteria–diatoms symbiosis involves
the chain-forming diatom Climacodium frauenfeldianum, common in oligotrophic tropical
and subtropical waters [100]. In this case, diatoms establish symbiotic relationships with a
coccoid unicellular diazotroph cyanobacterial partner that is similar to Crocosphaera watsonii
in morphology, pigmentation, and nucleotide sequence (16S rRNA and nifH gene) [41].
In addition, it has been demonstrated that nitrogen, fixed by cyanobionts is transferred
to diatom cells [90]. Occasionally, C. watsonii has been reported as symbiotic diazotroph
in other marine chain-forming planktonic diatoms, such as those belonging to the genera
Streptotheca and Neostrepthotheca [42]. One of the most peculiar symbiosis is represented by
the three-part partnership between the unicellular cyanobacterium Synechococcus sp., Lepto-
cylindrus mediterraneus, a chain-forming centric diatom, and Solenicola setigera, an aplastidic
colonial protozoa [43,44]. This peculiar association is cosmopolitan and occurs primarily in
the open ocean and the eastern Arabian Sea; nevertheless, it remained poorly studied and
exclusively investigated by means of microscopy techniques. Electron microscopy observa-
tions (SEM) reveal that in presence of S. setigera, the diatom can be apochlorotic (it lacks
chloroplasts), thus offering refuge to the aplastidic protozoan, benefiting, and nourishing
from the exudates it produces. It is assumed that the cyanobacterial partner, Synechoccus
sp., supports the protozoan by supplying reduced nitrogen. It is also speculated that the
absence of the cellular content of L. mediterraneus can be due to parasitism by S. setigera [44].
Recent studies reported a novel symbiotic relationship between an uncultivated N2-fixing
cyanobacterium and a haptophyte host [45–49]. The host is represented by at least three
distinctly different strains in the Braarudosphaera bigelowii group, a calcareous haptophyte
belonging to the class of Prymnesiophyceae [101–103]. The cyanobiont, first identified in
the subtropical Pacific Ocean through the analysis of nifH gene sequence, is UCYN-A or
“Candidatus Atelocyanobacterium Thalassa,” formerly known as Group A. For many years,
the lifestyle and ecology of this cyanobiont remained unknown, because cannot be visu-
alized through fluorescence microscopy. Furthermore, the daytime maximum nifH gene
expression of UCYN-A opposite with respect to unicellular diazotroph organisms [104,105].
The entire genome of the UCYN-A cells was sequenced, leading to the discovery of the
symbiosis: the genome is unusually small (1.44 Mbp) and revealed unusual gene dele-
tions, suggesting a symbiotic life history. Indeed, the genome completely lacks some
metabolic pathways, oxygen-evolving photosystem II (PSII), RuBisCo for CO2 fixation,
and tricarboxylic acid (TCA), revealing that the cyanobiont could be a host-dependent
symbiont [47,48].

Symbiotic relationships include interactions between cyanobacteria and nonpho-
totrophic protists. Heterotrophic protists include nonphotosynthetic, photosynthetic and
mixotrophic dinoflagellates, radiolarians, tintinnidis, silicoflagellates, and thecate amoe-
bae [51,52,92,106,107]. In dinoflagellates, cyanobionts were observed using transmission
electron microscopy with evidence of no visible cell degradation, the presence of storage
bodies and cyanophycin granules, nitrogenase, and phycoerythrin (confirmed by antis-
era localization), confirming that these cyanobionts are living and active and not simple
grazed prey [52,108,109]. In addition, these cyanobionts are often observed with coexisting
bacteria, suggesting a potential tripartite symbiotic interaction [52,109]. A cyanobiont
surrounding the outer sheath was observed in rare cases, suggesting an adaptation to avoid
cell degradation in symbiosis [52]. Despite the presence of N2 fixing cyanobacteria, molec-
ular analyses demonstrated the presence of a vast majority of phototrophic cyanobionts
with high similarity to Synechococcus spp. and Prochlorococcus spp. [50,51]. The complex
assemblage of cyanobacteria and N2 fixing proteobacteria suggests a puzzling chemical
and physiological relationship among the components of symbiosis in dinoflagellates, with
an exchange of biochemical substrates and infochemicals, and the consequent coevolution
of mechanisms of recognition and intracellular management of the symbionts. In tintinnid,
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ciliates able to perform kleptoplastidy, epifluorescent observations of Codonella species
demonstrated the presence of cyanobionts, with high similarities with Synechococcus, in the
oral grove of the lorica and, in addition, the presence of two bacterial morphotypes [52].
In radiolarians (Spongodiscidae Dictyocoryne truncatum), the presence of cyanobionts has
been demonstrated, initially identified as bacteria or brown algae [110,111]. In addition,
several non-N2-fixing cyanobionts have been identified using autofluorescence, 16s rRna
sequence, and cell morphology, resembling Synecococcus species [51,52]. In agreement with
associations observed in dinoflagellates, mixed populations of cyanobacteria and bacteria
are common in radiolarian species, although their inter-relationship is still unknown.

3. Macroalgae and Seagrasses

Mutual symbioses between plants and cyanobacteria have been demonstrated in
macroalgae and seagrasses, as is the case of Acaryochloris marina and Lynbya sp., in which
cyanobacteria contribute to the epiphytic microbiome of the red macroalgae Ahnfeltiopsis
flabelliformis [53] and Acanthophora spicifera [54], respectively. Epiphytic relationships have
been demonstrated as well with green and brown algae [112].

In Codium decorticatum, endosymbionts cyanobacteria belonging to genera Calothrix,
Anabaena, and Phormidium, have been shown to fix nitrogen for their hosts [55,56].

Cyanobacteria are also common as seagrass epiphytes, for example, on Thalassia tes-
tudinum, where organic carbon is produced by cyanobacteria and other epiphyte symbiotic
organisms rather than the plant itself [57,58]. In many cases, the presence of phosphates
stimulates the cyanobionts growth on seagrasses and other epiphytes [113,114]. In olig-
otrophic environments, nitrogen-fixing cyanobacteria are advantaged against other sea-
grass algal epiphytes [115], and these cyanobacteria may contribute to the productivity of
seagrass beds [116]. In addition, a certain level of host specificity can be determined in many
plant–cyanobacteria symbioses [59], for example, among heterocystous cyanobacteria such
as Calothrix and Anabaena, and the seagrass Cymodocea rotundata. A few cyanolichens live in
marine littoral waters [92], and they play a role in the trophism of Antarctic environments,
where nitrogen inputs from atmospheric deposition are low [117–119].

4. Sponges

Marine sponges are among the oldest sessile metazoans, known to host dense micro-
bial communities that can account for up to 40–50% of the total body weight [31]. These
microbial communities are highly species-specific, and characterized by the presence of sev-
eral bacterial phyla; cyanobacteria constitute one of the most important groups [120–122].
Sponges with cyanobionts symbionts can be classified as phototrophs when they are strictly
depending on symbionts for nutrition or mixotrophs when they feed also by filter feed-
ing [92]. These “cyanosponges” are morphologically divided into two categories—the
phototrophs present a flattened shape, while the mixotrophs have a smaller surface area to
volume ratio [29]. Cyanobacteria are located in three main compartments in sponges: free
in the mesohyl, singly or as pairs in closed-cell vacuoles, or aggregated in large specialized
“cyanocytes” [123]. Their abundance decreases away from the ectosome, while it is null in
the endosome of the sponge host [124]. Cyanobacteria belonging to the genera Aphanocapsa,
Synechocystis, Oscillatoria, and Phormidium are usually found in association with sponges
and most species are located extracellularly, while others have been found as intracellu-
lar symbionts benefiting sponges through fixation of atmospheric nitrogen [92]. Indeed,
some cyanobacteria located intracellularly within sponges showed to own nitrogenase
activity [124]. Most of the sponges containing cyanobionts, however, are considered to
be net primary producers [125]. Cyanobacteria in sponges can be transmitted vertically
(directly to the progeny) or horizontally (acquired from the surrounding environment),
depending on the sponge species [29]. For instance, the sponge Chondrilla australiensis
has been discovered to host cyanobacteria in its developing eggs [126]. Caroppo et al.,
instead, isolated the cyanobacterium Halomicronema metazoicum from the Mediterranean
sponge Petrosia ficiformis, which has been later found as a free organism and isolated from
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leaves of the seagrass Posidonia oceanica [119,127], highlighting that horizontal transmission
of photosymbionts can occur in other sponge species [128]. Cyanobacteria associated
with sponges are polyphyletic and mostly belonging to Synechoccoccus and Prochlorococcus
genera [129]. Synechococcus spongiarum is one of the most abundant symbionts found in
association with sponges worldwide [130,131]. In some cases, however, the relationship
between symbionts and host sponges can be controversial. Some Synechococcus strains seem
to be mostly “commensals”, whereas symbionts from the genus Oscillatoria are involved in
mutualistic associations with sponges [3,132].

In the past, many researchers performed manipulative experiments to demonstrate
the importance of cyanobacteria associations for the metabolism of the host [3,128,133]. A
case study from Arillo et al. performed on Mediterranean sponges revealed that Chondrilla
nucula, after six months in the absence of light, displayed metabolic collapse and thiol
depletion [63]. This highlights that symbionts are involved in controlling the redox potential
of the host cells transferring fixed carbon in the form of glycerol 3-phosphate and other
organic phosphates. Instead, Petrosia ficiformis, which is known to live in association
with the cyanobacterium Aphanocapsa feldmannii [62], showed the capability to perform
heterotrophic metabolism when transplanted in dark conditions [63]. In some tropical
environments, the carbon produced by cyanobionts can supply more than 50% of the energy
requirements of the sponge holobiont [122]. Cyanobacteria, moreover, can contribute
to the sponge pigmentation and production of secondary metabolites (e.g., defensive
substances) [134], as in the case of the marine sponge Dysidea herbacea [64]. Thus, symbiotic
associations could result in the production of useful compounds with biotechnological
potential [134,135]. Meta-analysis studies on sponge–cyanobacterial associations revealed
that several sponge classes could host cyanobacteria, although most of the knowledge
in this field remains still unknown, and mostly hidden in metagenomics studies [136].
Sponge-associated cyanobacteria hide a reservoir of compounds with biological activity,
highlighting an extraordinary metabolic potential to produce bioactive molecules for
further biotechnological purposes [137].

5. Cnidarians

It is widely accepted that reef environments rely on both internal cycling and nu-
trient conservation to face the lack of nutrients in tropical oligotrophic water [138]. A
positive ratio in the nitrogen export/input between coral reefs and surrounding oceans has
been observed [139,140]. Tropical Scleractinia are able to obtain nitrogen due to various
mechanisms that include the endosymbiont Symbiodinium [141], the uptake of urea and am-
monium from the surrounding environment [142], predation and ingestion of nitrogen-rich
particles [143–146], or diazotrophs itself through heterotrophic feeding [147] and nitrogen
fixation by symbiotic diazotrophic communities [4,7,68,69,73,148]. In addition to nitrogen
fixation, coral-associated microbiota performs various metabolic functions in carbon, phos-
phorus, sulfur, and nitrogen cycles [74,149–151]; moreover, it plays a protective role for the
holobiont [152–154], possessing inhibitory activities toward known coral pathogens [155].
These complex microbial communities that populate coral surface mucopolysaccharide
layers show a vertical stratification of population resembling the structure of microbial
mats, with a not-dissimilar flux of organic and inorganic nutrients [156]. It is reasonable
to believe that microbiota from all the compartments, such as tissues and mucus, can
contribute to the host fitness and interact with coral in different ways, ranging from the
direct transfer of fixed nitrogen in excess to the ingestion and digestion of prokaryotes [20].

Diazotrophs, and in particular cyanobionts, are capable of nitrogen fixation and they
can use glycerol, produced by zooxanthellae, for their metabolic needs [4,73]. The rela-
tionship between corals and cyanobacteria is yet to be fully explored and understood but
some lines of evidence regarding Acropora millepora [69,70] suggest coevolution between
corals and associate diazotrophs (cyanobionts). This relationship appears to be highly
species-specific. In hermatypic corals, a three-species symbiosis can be observed, with
diazotrophs in direct relation with Symbionidium symbiont. In Acropora hyacinthus and
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Acropora cytherea, cyanobacteria-like cells, characterized by irregular layered thylakoid
membranes and with a remarkable similarity to the ones described by previous authors [4],
were identified in strict association with Symbiodinium, within a single host cell, especially
in gastrodermal tissues [67]. The high density of these cells closely associated with Sym-
biodinium suggests that the latter is the main user of the nitrogen compounds produced
by the cyanobacterium-like cells. The presence of these cyanobacterium-like cells is more
widespread than assumed in the past and this symbiosis was found in many geographic
areas, for example, in the Caribbean region and the Great Barrier Reef [67].

Microbial communities inhabiting the coral surface can greatly vary due to envi-
ronmental conditions [147,157,158]. Diazotroph-derived nitrogen assimilation by corals
varies on the basis of the autotrophic/heterotrophic status of the coral holobiont and with
phosphate availability in seawater. Consequently, microbial communities increase when
corals rely more on heterotrophy or when they live in phosphate-rich waters [147]. This
suggests that diazotrophs can be acquired and their population managed according to the
needs of corals [159]. This view was confirmed by the identification of a first group of
organisms that form a species–specific, temporarily, and spatially stable core microbiota
and a second group of prokaryotes that changes according to environmental conditions
and in accordance with the host species and physiology state [160]. Experimental lines
of evidence, using N2-labelled bacteria, demonstrated that diazotrophs are transferred
horizontally and very early in the life cycle, and it is possible to identify nifH sequences, in
larvae and in one-week-old juveniles [70], and in adult individuals [69] of the stony coral
Acropora millepora. About coral tissues, the distribution of microbiota, and cyanobacteria as
well, is not the same in all the tissue districts. Species that live in the mucus resemble the
species variety and abundance that can be found in the surrounding water. On the contrary,
the microbiota of internal tissues including also calcium carbonate skeletons is made, at
least partially, of species that cannot be easily found free in the environment [68,69]. This
plasticity might as well characterize cyanobacteria hosted in cnidarians, although such
multiple relationships are still scarcely investigated.

Synechococcus and Prochlorococcus cyanobacteria have been identified in association
with Montastraea cavernosa [4], through molecular approaches and genes belonging to
filamentous cyanobacteria [6]. Filamentous and unicellular diazotrophic cyanobacteria
belonging to the orders Chroococcales, Nostocales, Oscillatoriales, and Proclorales were
found, using pyrosequencing approach, as associated organisms to the shallow water
coral Porites astreoides [6] and Isopora palifera [71]. On the contrary, in Montipora flabellate,
Montipora capitate [7], Acropora millepora [69,70], Acropora muricate, and Pocillopora dam-
icornis [69], cyanobacteria are present in various tissues and in the skeleton, but their
contribution in terms of nitrogen fixation is minimal [5]. In Montastraea cavernosa, Mon-
tastraea franksi, and in species of the genus Diploria and Porites, cyanobacterial sequences
belonging to various genera (e.g., Anabaena, Synechoccus, Spirulina, Trichodesmium, Lyngbya,
and Phormidium) have been found in coral tissues by PCR amplification [4,73–75,161]. In
Montastraea cavernosa, the orange fluorescence protein, peaking at 580 nm, was attributed
to phycoerythrin, a cyanobacterial photopigment produced by a cyanobacterium living in
the host epithelial cells [4]. The different colors, especially of fluorescent proteins in corals,
suggest specific biological functions for these compounds. Moreover, it is not clear if they
act as photoprotective compounds, antenna pigments, or if they photoconvert part of the
light spectrum to help zooxanthellae photosynthesis. These results are contested by some
authors who excluded the role of phycoerythrin as a pigment compound in corals [5]. In
order to determine the presence and the activity of cyanobacteria in corals, the following
aspect should be considered: nonquantitative approaches cannot assure accurate values of
abundance; moreover, the presence of nifH gene is not necessarily linked to the fixation and
the transfer of nitrogen performed by diazotrophs. H [20]. Endolithic cyanobacteria have
been found in Porites cylindrica and Montipora monasteriata, but their role in the relationship
with host corals is unknown [162]. In contrast, in other cnidarians, it has been demonstrated
that endolithic cyanobacteria establish symbiotic relationships with coral hosts: this is the
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case of Plectonema terebrans, a cyanobacterium belonging to the order Oscillatoriales [72].
Cold-water corals are ecosystem engineers providing a habitat for thousands of different
species. Their trophism is related to the low energy, partially degraded, organic matter
that derives from the photic zone of oceans [163]. To face the lack of nutrients, cold-water
corals evolved, on one hand, from an opportunistic feeding strategy [164,165], and on the
other hand, from a symbiosis with various diazotrophs, including cyanobacteria [166–168].
Plectonema terebrans filaments, visible as pinkish to violet staining, are able to colonize the
entire skeleton of the cold-water corals Desmophyllum dianthus and Caryophyllia huinayensis;
however, their density is higher at the skeleton portion covered with polyp tissue [72]. The
close contact between coral tissues and cyanobacteria obliges the endoliths to exchange
nutrients with the surrounding water through the polyp itself. This close relationship is
advantageous for the cyanobacterium because the coral nematocysts protect it from the
grazers [169], and it is mutualistic because such a close relationship inevitably includes
exchanges of metabolites between organisms [170]. These metabolites produce benefits
for the host and play a trophic and/or protective role in the symbiotic mutualistic rela-
tionship. Middelburg et al. suggested that in cold-water corals, a complete nitrogen cycle
occurs similar to that inferred for tropical reefs, ranging from ammonium production and
assimilation to nitrification, nitrogen fixation, and denitrification [166].

The effects of environmental changes on the nitrogen fixation rates are still poorly
explored, especially if specifically related to the symbiotic diazotrophs and to cyanobacteria.
Ocean acidification enhances nitrogen fixation in planktonic cyanobacteria, as in the case
of Crocosphaera watsoni, due to enhancement of photosynthetic carbon fixation [171]. It is
interesting to underline that in the planktonic diazotroph cyanobacterium Trichodesmium
sp., which forms symbiotic association with diatoms [172], the nitrogen fixation is en-
hanced under elevated CO2 conditions [173], but it is strongly reduced if there is an iron
limitation [174]. On the contrary, Seriatopora hystrix diazotrophs are sensible to ocean
acidification, with a decline of the nitrogen fixation rate at high CO2 concentration, leading
to consequences on coral calcification and potential starvation for both the coral and the
Symbiodinium spp. [175]. In addition, environmental changes can increase in coral sym-
bionts, the abundance of microbial genes involved in virulence, stress resistance, sulfur and
nitrogen metabolisms, and production of secondary metabolites. These changes that affect
the physiology of symbionts can also affect the composition of the coral-associated micro-
biota [74], with the substitution of a healthy-associated coral community (e.g., cyanobacte-
ria, Proteobacteria), playing a key role in mediating holobiont health and survival upon
disturbance [176], with a community related to coral diseases (e.g., Bacteriodetes, Fusobac-
teria, and Fungi).

6. Ascidians and Other Tunicates

Tunicates are considered rich in biologically active secondary metabolites [177–180],
but it is unclear if these bioactive compounds were produced by tunicates themselves
or by associated microorganisms [181,182], although strong direct and indirect lines of
evidence show that defensive compounds and other secondary metabolites are produced
by various symbiotic prokaryotes and not by the tunicates themselves. Among tunicate
symbionts, cyanobacteria have been found in symbiotic relationships with various tuni-
cates, ranging from tropical to temperate environments. In fact, obligate associations with
cyanobacteria of Prochloron and Synechocystis genus have been found in some species of
ascidians belonging to the genera Didemnum, Lissoclinum, Diplosoma, and Trididemnum [77],
with cyanobacterial cells distributed in the cavities and/or tunic [78]. These cyanobionts
have been demonstrated to be part of the core microbiome, in which species and popula-
tions do not reserve the water–column ones and microbiome–host relationship is species
specific and not correlated to the geographical location [9]. In colonial ascidians, such as
Botryllus schlosseri and Botrylloides leachii, an abundant population of Synechococcus-related
cyanobacteria have been identified [79], while in the Mediterranean ascidian Didemnum
fulgens, a coral-associated cyanobacterium has been observed in its tissues [183]. In some
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cases, the cyanobiont completely or partially lacks the nitrogen-fixation pathway. This is
the case of Prochloron didemni, in symbiosis with the tunicate Lissoclinum patella, which is
probably involved in carbon fixation and in the ammonia incorporation and not in the
nitrogen fixation [80,81]. In fact, in contrast with the presence of genes for the nitrate
reduction pathway and all primary metabolic genes required for free-living, Prochloron
seems to lack the capability to fix nitrogen and to live outside the host [80]. Prochloron
sp. also protects the host versus active forms of oxygen, which can be formed during
photosynthesis processes. The cyanobacterium produces a cyanide-sensitive superoxide
dismutase, a Cu-Zn metalloprotein, that has been demonstrated to prevent the toxicity of
superoxide radicals, hydrogen peroxide, and hydroxyl radicals in the host ascidians [82].
In Lissoclinum patella, other cyanobacteria were abundant in various tissues and one of
these is Acaryochloris marina, a chlorophyll d-rich cyanobacterium, able to sustain oxygenic
photosynthesis under near-infrared radiation that propagates through Prochloron cells
and ascidian tissue [83]. The Caribbean tunicate Trididemnum solidum produces a peculiar
biologically active molecule, the acyl-tunichlorine (Figure 2) [84,85], that contains both
nickels accumulated by the tunicate and pheophytin, which is produced by organisms
with photosynthetic machinery and suggests a dual origin of this compound. In fact, this
tunicate hosts the cyanobacterium Synechocystis trididemni, which contributes to the produc-
tion of acyl-tunichlorine synthesizing the pheophytin through an intermediate molecule,
the pyropheophorbide [84,85]. In addition, behavioral tests demonstrated the presence of
deterring compounds in ascidian larvae able to distaste predatory fishes. These compounds
have been identified to be didemnin B (Figure 2) and nordidemnin [65]. Didemnin B was
found in various tunicates, and it is similar to a bioactive molecule produced by other
cyanobacteria, enforcing the idea that the predation-deterring compounds can be produced
by cyanobionts [184], although the possibility of a horizontal gene transfer cannot be totally
rejected [185,186]. The tunicate–cyanobacteria symbiosis is evidenced by the presence, in
the host tunicate, of a cellulose synthase gene, similar to the one found in cyanobacteria,
which probably derives from horizontal transfer between the two organisms [187,188]
and that may have a role in the tunicates evolutive radiation and in the development of
adult and larvae body plans [188–190]. The presence of a rich and bio-diversified micro-
biome makes tunicates promising models for various purposes and important for drug
discovery [10,191].

7. Metabolic Interactions Involved in Symbiosis of Cyanobacteria

Greater insight into metabolic interactions between symbiont cyanobacteria and host
organisms, particularly algae and sponges, could be useful for enhancing the growth efficiency
of these organisms and their valuable bioactive compounds. Cyanobionts produce a large array
of secondary metabolites, and symbiotic interactions could be a “unique ecological niche open
space for evolution of novel metabolites” that are peculiar of the infochemical communication
among these organisms [21]. In fact, some of these molecules are found only in prokaryotes in a
symbiotic relationship with, for example, lichens, marine sponges, and beetle [27]. Environmen-
tal bioavailability of these bioactive secondary metabolites is lower than the ones used in these
studies and, in addition, some of these molecules (e.g., nodularins) have been demonstrated to
be produced intracellularly and liberated into the environment only during cell lysis. These
lines of evidence suggest that it is unlikely these cyanobacterial bioactive molecules can play a
role as allelopathic infochemicals and, consequently, their role in the symbiotic association is
at least controversial. The possible role, suggested by some authors [21,192], could be linked
to chemical defense against grazing, and it is demonstrated that at least some cyanobacterial
molecules can enter the food webs and persist in the environment, having consequences on
various target organisms. For example, the aforementioned nostopeptolide A (Figure 2) has
been demonstrated to be a key regulator of hormogonia formation. The production and ex-
cretion of various nostopeptolide variants changed according to the symbiotic status, de facto
regulating the Nostoc ability of infection and reconstitution of the symbiosis (Figure 4) [21,24].
Moreover, changes in the metabolomic profile, demonstrated, for example, in the case of



Mar. Drugs 2021, 19, 227 14 of 29

Nostoc-Gunnera and Nostoc-Blasia interactions, have probably a key regulatory influence
on hormogonia formation, affecting the infection. These chemoattractants, produced by
host organisms, are hormogonia-inducing factors (HIFs), and their production seems to
be stimulated by nitrogen starvation [193,194]. The production of HIFs is not peculiar of
Gunnera and Blasia, and some of them have been identified in other species, for example,
in the hornwort Anthoceros punctatus [195]. Investigations performed on different mutant
strains of Nostoc punctiforme demonstrated that mutation of the ntcA gene reduced the
frequency of HIF-induced hormogonia, leading to the incapacity to infect host organ-
ism [196]. On the contrary, strains that show a greater hormogonia induction in response to
Anthoceros HIF also infect the plant at a higher initial rate than not-mutated strains. Various
chemoattractants are produced by both host and nonhost organisms to attract hormogonia.
In fact, these chemoattractants are sugar-based molecules, and it has been demonstrated
that simple sugars, such as arabinose and glucose, are able to attract hormogonia [197]. In
this context, the polysaccharide-rich mucilage secreted by mature stem glands of Gunnera
chilensis, rich in simple sugar molecules and arabinogalactan proteins, could play a role
in symbiosis communication with cyanobacteria, as demonstrated for other symbiotic
relationships, i.e., Alnus–Frankia symbiosis [198]. Finally, in terrestrial species, it has been
demonstrated that various lectins could act as chemoattractants, playing a crucial role in
cyanobacterial symbiosis in bryophyte and Azolla species with cyanobacteria belonging to
the Anabaena group [199], although they have probably been involved in fungus-partner
recognition in lichens [199–201].
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Figure 4. Schematic representation of hormogonia induction and repression in cyanobacterial symbiosis. Hormogonia
motile forms, stimulated by several inducing factors that act as chemoattractants, are able to infect the host. Once infected,
the host produces hormogonia-reducing factors, reconstituting the symbiosis.

Other molecules are involved in symbiosis acting as hormogonia-repressing factors
(HRFs). These repressing factors induce in N. punctiforme the expression of the hrmA
gene that is part of the hrmRIUA operon. The hrmRIUA operon is similar to the uronate
metabolism operon found in other bacteria, although hrma gene is peculiar of cyanobac-
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teria with no sequence homology with any gene in the databases [194,202]. Other genes
involved in the repression of the hormogonia formation are hrmR, which produce a tran-
scriptional repressor, and hrmE, whose function is unknown and are negatively regulated
by fructose [203]. Some authors conclude that fructose, or a converted form of this sugar
that acts as an infochemical, might regulate hormogonia formation [204]. The synergistic
interaction between host and cyanobacteria has been demonstrated in green algae cocul-
ture [205]. Although the cyanobacteria–green algae coculture influences growth, lipid, and
nitrogen contents, it is interesting that various algae–cyanobacterium combinations led to
the presence of peculiar secondary metabolites in the culture medium. According to the
algae-cyanobacterium combination, from 6 to 45 new compounds are present in the cul-
ture medium, and many other secondary metabolites are absent if the individual cultures
are compared.

The fact that the bouquet of volatile secondary metabolites secreted in the culture
medium (secretome) of cocultures is peculiar of cyanobacterial strain indicates that this
response of green algae is species-specific. This is confirmed by the observed phenomenon
of growth-enhancing or inhibition on the components of the synergistic interaction, typical
of each cocultured species. Volatile organic compounds, revealed by GC–MS analysis,
such as hexanol, heptanone, tetradecane, pentadecane, heptadecane, etc., were present
in all the investigated cocultivation and were also reported by other authors that investi-
gated volatile organic compounds secreted in a symbiotic relationship, as in the case of
the mentioned Anabaena-Azolla case [206]. Detected compounds have been demonstrated
to have biological activities on the synergistic interaction and are part of the exchange
of infochemicals that the two partners act to improve their physiological fitness, as in
the case of hexadecane, which is involved in the regulation of central carbon metabolism
and beta-oxidation of fatty acids [207], or trichloroacetic acid, which is involved in the
incorporation of nitrogen in amino acids and proteins [208]. Lines of evidence suggested
that signal–host interactions are related to the presence of various receptors belonging
to the pattern recognition receptors (PRRs), and they include Toll-like receptors (TLRs),
NOD-like receptors (NLRs), C-type lectin receptors (CTLRs) [209–211], G-protein cou-
pled receptors (GPCRs), and peptidoglycan recognition proteins (PGRPs) [212,213]. PRRs
recognize prokaryotic molecules such as cell surface molecules (i.e., lipopolysaccharide
and peptidoglycan), while GPCRs and PGRPs recognize bacteria-derived molecules, such
as signal peptides and short-chain fatty acids [212,213]. Although a few studies have
been focused on the investigation of the relationship between cyanobacteria and host
organisms, the presence of these receptors (except PGRPs) has been demonstrated in
many invertebrates considered in this review, such as Porifera, Cnidaria, and Mollusca
species [36]. In Porifera, the role of scavenger receptors cysteine rich (SRCRs) has been
identified as regulators of host colonization by the microbiota. In fact, in Petrosia ficiformis,
an SRCR gene acts as a mediator in the establishment of intracellular cyanobionts downreg-
ulated in sponge individuals living in dark caves in an aposymbiotic state and
overexpressed in individuals living at a short distance in illuminated areas [214]. The
same gene was identified in other symbiotic sponges, for example, in Geodia cydonium,
and in species belonging to different phyla, such as the sea urchin Strongylocentrotus
purpuratus [39].

8. Bioprospecting of Cyanobacteria Symbioses

Marine ecosystems, characterized by a vast range of environmental conditions and interac-
tions among organisms, represent a huge repository of chemical diversity. Marine biotechnology
aims at exploiting, in eco-sustainable ways, natural processes and biosynthetic pathways behind
the chemical interactions among living marine species, for the identification of structurally
diverse and biologically active secondary metabolites. In the last decades, more than 90 genera
of cyanobacteria have been investigated for the biosynthesis of natural compounds belonging to
several chemical classes, such as alkaloids, peptides, terpenes, polysaccharides, and polyketides.
The cyanobacterial orders mainly studied are Synechococcales, Nostocales, Chroococcales, and
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Oscillatoriales [215]. The genus Nostoc synthesizes several variants of nostopeptolide, a cyclic
heptapeptide, when cyanobacteria live in association with hosts. This group of compounds
showed a strong antitoxin effect; nostopeptolides inhibited the transport of nodularin (70 nM)
into hepatocytes (HEK 293); the blockage of nodularin uptake, through the organic anion-
transporters OATP1B1/B3, avoided hepatotoxic-induced apoptosis [216]. Symbiosis can induce
the production of cytotoxic molecules by cyanobacteria, such as nosperin (Figure 2) [27]. This
compound is a chimeric polyketide and is a biosynthetic product of the trans-AT polyketide
synthases [217]. This biosynthetic pathway has been elucidated firstly in heterotrophic bac-
teria associated with marine sponges, producing peridin-like compounds. These molecules
demonstrated high toxicity for human cells; thus, they are considered interesting candidates
for the development of new anticancer drugs [218,219]. Indeed, they can block proliferation
in vitro of human promyelocytic cells (HL-60), human colorectal adenocarcinoma (HT-29), and
human lung adenocarcinoma (A549) (mycalamides A and B (Figure 2) with IC50 < 5 nM). The
mechanism of action of peridin-like compounds can be related to the interference of these
compounds with protein biosynthesis and cell division processes [218].

Complete elucidation of chemical biosynthesis activated by the symbiotic relationship
between cyanobacteria and other marine organisms can supply new information for new
cocultivation approaches, improving the eco-sustainable production of molecules of inter-
est. The food industry utilizes bacterial consortia to produce fermented food, improving
food quality [220]. Cyanobacteria are known to exchange nutrients with host organisms
(e.g., microalgae), and this can be used for the large-scale production of vitamins, such
as vitamin B (Figure 2) [221]. The de novo synthesis of vitamin B12 is characteristic of
certain prokaryotes. Cyanobacteria synthesize several vitamin B12 variants that, in a
natural symbiotic relationship, are required by microalgae for their growth [222]. This
cyanobacteria–microalgae relation can be optimized for the production of vitamins with
applications in the nutraceutical industry. Another example of symbiotic interaction with
biotechnological potential is the cyanobacteria–fungi association. Exopolysaccharides
(EPSs) are produced by many fungal species and this group of compounds is responsible
of immunomodulatory activity on the human immune system, via NF-кB and MAPK
pathways [223]. The EPSs production can be implemented using the cocultivation of
cyanobacteria with fungi. Angelis et al. [224] demonstrated that the production of EPS in
coculture was higher (more than 30%) than the monocultures. Schmidt et al. identified
patellamide peptides biosynthetic gene cluster in the obligate cyanobacterial symbiont
Prochloron didemni [225] when in association with the ascidian Lissoclinum patella [225]. The
in vitro effect of these cyclic peptides was already known since they induce cytotoxicity on
human and murine cancer cells (murine leukemia cells, P388; human lung adenocarcinoma
cells A549; human colorectal adenocarcinoma, HT-29) through inhibition (IC50 2.5 pg mL−1)
of topoisomerase II activity [226].

Cyanobacteria are considered potential cell farms for the natural production of pig-
ment proteins, such as phycobilisomes (PBSs). PBSs act together to harvest light for
photosynthetic apparatus; phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC),
and phycoerythrocyanin (PEC) are the main proteins belonging to PBSs. These molecules
were also found in cyanobacteria living in a symbiotic relationship with corals [4]. They
mainly act as photoprotective compounds and exhibit in vitro beneficial effects, such as
hepato-protective, antioxidant, anti-inflammatory, UV-screen, and anti-aging activities,
making the cyanobacteria pigments an interesting class of compounds for their use in
food, cosmetics, and pharmaceutical industries. Symbiosis can modify the biosynthetic
rate of these pigments. Indeed, PE was found highly synthetized (> 71 gold particles µm−2,
using the immunogold-labeling technique) [52], when dinoflagellate-cyanobacteria consor-
tia were present in low nitrogen marine environments [109]. PE and PC were described
as potent free radical scavengers [227,228]. In addition, PC exerted a strong antiprolif-
erative effect on many human cancer cell lines. It triggered activation of Caspase 3 or
9 on HepG2 (human hepatoma, IC50 100 µg mL−1 [229]), MCF-7 (breast cancer cells, IC50
50 µg mL−1 [230]), Hela (cervical cancer cells, IC50 80 µg mL−1 [231]), and SKOV-3 (ovar-
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ian cancer cell, IC50 130 µM [232]). Same compound is also able to induce cell cycle
arrest in cancer cells, such as HT-29 (colorectal adenocarcinoma, IC50 30 µg mL−1 [233]),
A549 (lung adenocarcinoma, IC50 50 µg mL−1 [234]), K562 (erythroleukemic cells, IC50
7 ng mL−1, [234], SKOV-3 (ovarian cancer cells, IC50 160 µM [235]) and MDA-MB-231
(breast cancer cells, IC50 10 µM [236]).

Cyanobacteria can contribute to sponge pigmentation and to the production of sec-
ondary metabolites, as defensive substances [134]. Several cyanobacterial strains were
isolated from the Mediterranean sponge P. ficiformis [61]; some of these strains showed an-
tiproliferative activity against human cells [61,135]. Aqueous extracts of isolated cyanobac-
teria (at 150 µg mL−1, final concentration) were used to treat two human cancer cell lines,
Hela and SH-SY5Y (cervical cancer and neuroblastoma cell lines, respectively), detecting
an antiproliferative effect soon after 6 h. The filamentous cyanobacterium Oscillatoria
spongeliae produces a polybrominated biphenyl ether, when in association with the sponge
Dysidea herbacea. The isolated compound 2-(2’, 4′-dibromophenyl)-4, 6-dibromophenol
(Figure 2) revealed a strong antibacterial activity toward resistant bacterial pathogens
(MIC ≤ 2.5 µg mL−1 [237]) and toxicity against other cyanobacteria, such as Synechococcus
sp. strains. Another example of compound produced by cyanobacteria living in asso-
ciation with marine sponges is the cyclic heptapeptide leucamide A (Figure 2), isolated
from the sponge L. microraphis [66]. This compound showed strong cytotoxicity against
several tumor human cells [238]. In particular, the cyclic peptide was able to inhibit the
proliferation of human gastric cancer cells (HM02), with a GI50 of 5.2 µg mL−1 and of two
human hepatocellular carcinoma cell lines (HepG2, GI50 of 5.9 µg mL−1; Huh7, GI50 of
5.1 µg mL−1). These results are not surprising since several other cyclic peptides have been
reported to be cytotoxic toward several similar cell lines [239]. William et al. isolated a cyclic
depsipeptide named majusculamide C (Figure 2) from the sponge Ptilocaulis trachys [240].
This compound was found in cyanobacteria associated with the abovementioned sponge
and revealed a strong antifungal activity against plant pathogens, such as Phytophthora
infestans and Plasmopora viticola [66,241].

The cooperation between microorganisms and corals also produces chemical advan-
tages for the host [154]. In particular, coral mucus is considered of great interest for
its immunomodulatory properties [242]. Mucus chemical composition is influenced by
photosynthetic symbionts, such as cyanobacteria. Coral mucus is rich in carbohydrates
and contains glycoproteins, such as mucins, polysaccharides, and lipids [243]. Mucins
showed no toxic effect on human cells (up to 500 µg mL−1) and exhibited potential im-
munomodulatory property. This glycoprotein family can activate antioxidant mechanisms
and immune responses on RAW 264.7 macrophage cells and zebrafish embryos (concen-
tration range 50–400 µg mL−1 [244]). UV rays represent one of the most harmful abiotic
factors and organisms exposed to high levels of UV radiation often collaborate, through
a symbiotic relationship, for the construction of a more efficacious defense mechanism.
In this regard, cyanobacteria produce mycosporine-like amino acids (MAAs). They are
UV-absorbing hydrophilic molecules that are considered promising for the formulation of
skin care products [245]. MAAs can absorb light in the range of UV-A (315–400 nm) and
UV-B (280–315 nm); this process does not produce dangerous compounds (e.g., free radi-
cals). MAAs demonstrated strong in vitro scavenging activity (scavenging concentration
SC50 of 22 µM) and exerted a protective effect on human cells (A375, concentration range
0.1–100 µM) against oxidative stress, induced by oxygen peroxide (H2O2, up to 25µM).
The protective mechanism can be observed at the nucleus level, where MAAs, comparable
to the well-known ascorbic acid, counteract the genotoxic effect of H2O2 (10 and 25 µM),
which causes DNA strand breaks [246].

More than 300 new metabolites have been discovered in tunicates since 2015 [191,247].
Some cyanobacteria-associated bioactive compounds have been identified, such as patel-
lamide A and C (Figure 2) [225,248–250], engineered and produced using Escherichia coli,
and ulicyclamide and ulithiacyclamide (Figure 2), isolated in the 1980s in the tunicate
Lissoclinum patella [251]. Ulicyclamide showed strong antiproliferative activity against
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leukemia cells (L1210, IC50 7.2 µg mL−1). The same antiproliferative effect was found when
human urinary bladder carcinoma cells (T24, IC50 0.1 µg mL−1) and T lymphoblastoid
cells (CEM, IC50 0.01 µg mL−1) were treated with Ulicyclamide [252]. In addition, a wide
variety of toxic cyclic peptides were isolated from Prochloron species, produced through a
PRPS pathway [225,248,253] and some gene biosynthetic highly conserved clusters. The
high variability of cyanobacterial bioactive compounds is caused by the hypervariability of
precursor peptides cassettes [254]. In addition, Prochloron metagenomic analyses evidenced
the presence of additional metabolite gene clusters that can be involved in the production
of yet unknown bioactive compounds with defensive functions [255]. Another defense
mechanism, typical of benthic marine organisms, is the production of deterring compounds
against predators. Didemnin B (Figure 2), a cyclic depsipeptide, has been found in many
tunicates; it inhibits the proliferation of MOLT-4 cells (human T lymphoblasts; IC50 5 nM)
through cell cycle arrest (G1/S phase) [256]. This compound did not reach the market
for its cardiac and neuromuscular toxicities. However, the structurally similar molecule
dehydrodidemnin B (aplidine, Figure 2), produced by the Mediterranean tunicate Aplidium
albicans, exhibited more potent antiproliferative activity and less toxic nonspecific effects.
This compound reached the phase II trials as anticancer drug against medullary thyroid
carcinoma, renal-cell carcinoma, and melanoma [257,258]. The volatile organic compounds
(VOCs) are bioactive metabolites produced by cyanobacteria and their in vitro biosynthesis
is influenced by cocultivation conditions with symbiotic microorganisms. VOCs isolated
from a strain of the genus Synechococcus showed antibacterial activity (50 mg mL−1 of the
total extract) against the Gram-negative bacterium Salmonella typhimurium [259].

9. Conclusions

Although symbiosis was once discounted as an anecdotal evolutionary phenomenon,
evidence is now overwhelming that obligate or facultative associations among microor-
ganisms and between microorganisms and multicellular hosts had crucial consequences
in many landmark events in evolution and in the generation of phenotypic diversity and
complex phenotypes able to colonize new environments. The ability to reconstruct evolu-
tion at the molecular level, and especially comparative analyses of full genome sequences,
revealed that integration of genes originating from disparate sources has occurred on a
very large scale. Lateral gene transfer is clearly important in prokaryotes, but in many
cases, and particularly in multicellular eukaryotes, the route to recruiting foreign genes,
and thereby novel metabolic capabilities, involves symbiotic association, i.e., a persistent
close interaction with another species. Symbiosis binds organisms from all domains of
life and has produced extreme modifications in genomes and structure. Symbiosis affects
genome evolution by facilitating gene transfer from one genome to another and the loss
from one genome of genes present in both symbiotic partners. The result is a complex,
fused (conceptually and often literally) meta-organism, with different compartments for
different portions of its required genes, mechanisms for signaling between the partners and
transporting gene products between compartments, and new combinations of metabolic
pathways leading to biochemical innovation, as previously demonstrated. Parasitic inter-
actions, which are considered symbiotic in that they involve intimate multigenerational
association between organisms, are a conspicuous example of genomic interplay over
evolutionary timescales and metabolic manipulation of one organism by other and have
also led to the evolution of complex chemical defense mechanisms, including an extremely
diverse panel of repellent or toxic secondary metabolites. For all these reasons symbioses,
in particular, those involving cyanobacteria are thus a highly promising potential source of
novel chemical entities relevant for the drug discovery process and the development of
functional ingredients, with different fields of applications.

Many studies reported in this review highlight how secondary metabolites produced
by cyanobacteria can vary in terms of composition and abundance, depending on many
abiotic and biotic factors; symbiotic relationship can strongly modify the activation of
biosynthetic pathways, producing specific molecules. Elucidating environmental factors
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that govern growth, distribution, and interspecific interactions of cyanobacteria in ma-
rine environments could increase our knowledge and ability to induce the expression of
bioactive molecules for drug discovery. A huge number of molecules, with promising
biotechnological activities, has been reviewed in this work, from the symbiosis between
cyanobacteria and a large plethora of marine organisms. They can find applications in the
food, cosmeceutical, nutraceutical, and pharmaceutical industries. Here, we focused our
attention on the symbioses of cyanobacteria with few phyla of organisms (fungi, bacteria,
diatoms, macroalgae, seagrasses, sponges, tunicates) because these obtained sufficient at-
tention in previous investigations. However, it is likely that focusing on the relationships of
cyanobionts with other groups of invertebrates and microorganisms will provide evidence
for novel cases of symbioses. Evidently, further research studies on the still poorly explored
field of this particular kind of symbiosis will promote enriching the overabundance of
active metabolites already reported. In addition, studies targeted at the development of
novel genetic and metabolic tools aimed at their overproduction will strongly enrich the
market with novel marine bioactive compounds.
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