193 research outputs found

    First direct observation of a nearly ideal graphene band structure

    Get PDF
    Angle-resolved photoemission and X-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films cause adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds to an individual macro-scale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure

    Constant soft tissue distance model in pregnancy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28106/1/0000554.pd

    Ultrasound attenuation coefficient in the fetal liver as a function of gestational age

    Full text link
    An apparent increase in the ultrasound attenuation coefficient per unit frequency, [alpha]f, of fetal liver as a function of gestational age has been observed. Measurements were made in utero with a 25 megasample/sec RF digitizer and a real time ultrasound system with a 5 MHz scan head. A precise measurement of [alpha]f was employed in which the intercept was tied to 0 at a frequency of 0. In 178 examinations of normal pregnancies, the linear regression of the [alpha]f increased 26% between 26 and 40 weeks gestation. This statistically significant increase (p < 0.0001) is consistent with several observations, those of Parker . of increased attenuation in liver when glycogen is added, the increasing glycogen storage in the liver before birth, and our own pre- and postnatal measurements reported elsewhere. A noninvasive assay for glycogen content would have important applications in medicine and biomedical science. However, an increase in measurement accuracy and precise correlation with glycogen content will be required to make meaningful predictions in individual cases, as opposed to the present statistical trends.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28879/1/0000715.pd

    Quantitative assessment of surface roughness using backscattered ultrasound: The effects of finite surface curvature

    Full text link
    We have previously described a technique to quantify surface fibrillatory changes in osteoarthritic articular cartilage. In that study, the angular distribution of the scattered acoustic field from an insonifying source directly related to the distribution of surface fibrillatory changes. In the current study, we demonstrate a more sensitive method to quantify surface roughness, the effect of global surface curvature in estimating surface roughness and the utility of using focused transducers in circumventing this potential problem for in vivo work. Phantoms composed of acrylic rods with and without sandpaper grit (about 15 to 72 [mu], mean particle size) applied to the surface were scanned. A more robust angular scattering technique to measure the angle dependent data was employed, in which the integrated squared pressure amplitude over a finite time window (mean power) was measured as a function of incident acoustic angle for varying surface roughnesses and radii of curvature. We show that the potential dynamic range for making roughness discriminations diminishes with decreasing radius of curvature of the acrylic rod phantoms using an unfocused transducer. This effect is minimized with use of a focused transducer. Roughness effects are most evident at sufficiently large angles where incoherent scattering dominates. We conclude that the roughness of cylindrically curved surfaces can be quantitatively assessed using a focused ultrasound beam at sufficiently large incident angles, given that the focal spot size is sufficiently smaller than the radius of curvature of the surface.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31893/1/0000845.pd

    Quantitative assessment of cartilage surface roughness in osteoarthritis using high frequency ultrasound

    Full text link
    Osteoarthritis (OA) is a common disease which affects nearly 50% of people over age 60. Histologic evaluation suggests that fibrillations ~20-150 [mu]m are among the earliest changes in the articular cartilage. We propose a technique to quantify these surface fibrillatory changes in osteoarthritic articular cartilage by considering the angular distribution of the envelope-detected backscattered pressure field from an incident 30-MHz focused transducer. The angular distribution of the scattered acoustic field from an insonifying source will directly relate to the distribution of surface fibrillatory changes. Data are presented for three different grades (400, 500 and 600 grit) of commercially available emory paper and three samples of osteoarthritic femoral head articular cartilage, which were visually assessed as having smooth, intermediate and rough surfaces, respectively. Our preliminary results indicate a probable monotonic relationship between articular cartilage roughening and the degree of broadening in the angle-dependent pressure amplitude. When applied to the emory paper, the technique indicates sensitivity to differences as small as ~5-10 [mu]m in mean roughness. This procedure may provide an extremely sensitive and reproducible means of quantifying and following the cartilage changes observed in early osteoarthritis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30279/1/0000680.pd

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo

    Get PDF
    Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic ÎČ-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic ÎČ-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome
    • 

    corecore