37 research outputs found

    Genome-Wide Association Mapping of Grain Micronutrients Concentration in Aegilops tauschii

    Get PDF
    Bread wheat is an important and the most consumed cereal worldwide. However, people with predominantly cereal-based diets are increasingly affected by micronutrient deficiencies, suggesting the need for biofortified wheat varieties. The limited genetic diversity in hexaploid wheat warrants exploring the wider variation present in wheat wild relatives, among these Aegilops tauschii, the wild progenitor of the bread wheat D genome. In this study, a panel of 167 Ae. tauschii accessions was phenotyped for grain Fe, Zn, Cu, and Mn concentrations for 3 years and was found to have wide variation for these micronutrients. Comparisons between the two genetic subpopulations of Ae. tauschii revealed that lineage 2 had higher mean values for Fe and Cu concentration than lineage 1. To identify potentially new genetic sources for improving grain micronutrient concentration, we performed a genome-wide association study (GWAS) on 114 non-redundant Ae. tauschii accessions using 5,249 genotyping-by-sequencing (GBS) markers. Best linear unbiased predictor (BLUP) values were calculated for all traits across the three growing seasons. A total of 19 SNP marker trait associations (MTAs) were detected for all traits after applying Bonferroni corrected threshold of -log10(P-value) ≥ 4.68. These MTAs were found on all seven chromosomes. For grain Fe, Zn, Cu, and Mn concentrations, five, four, three, and seven significant associations were detected, respectively. The associations were linked to the genes encoding transcription factor regulators, transporters, and phytosiderophore synthesis. The results demonstrate the utility of GWAS for understanding the genetic architecture of micronutrient accumulation in Ae. tauschii, and further efforts to validate these loci will aid in using them to diversify the D-genome of hexaploid wheat

    Mapping of Quantitative Trait Loci for Grain Iron and Zinc Concentration in Diploid A Genome Wheat

    Get PDF
    Micronutrients, especially iron (Fe) and zinc (Zn), are deficient in the diets of people in underdeveloped countries. Biofortification of food crops is the best approach for alleviating the micronutrient deficiencies. Identification of germplasm with high grain Fe and Zn and understanding the genetic basis of their accumulation are the prerequisites for manipulation of these micronutrients. Some wild relatives of wheat were found to have higher grain Fe and Zn concentrations compared with the cultivated bread wheat germplasm. One accession of Triticum boeoticum (pau5088) that had relatively higher grain Fe and Zn was crossed with Triticum monococcum (pau14087), and a recombinant inbred line (RIL) population generated from this cross was grown at 2 locations over 2 years. The grains of the RIL population were evaluated for Fe and Zn concentration using atomic absorption spectrophotometer. The grain Fe and Zn concentrations in the RIL population ranged from 17.8 to 69.7 and 19.9 to 64.2 mg/kg, respectively. A linkage map available for the population was used for mapping quantitative trait loci (QTL) for grain Fe and Zn accumulation. The QTL analysis led to identification of 2 QTL for grain Fe on chromosomes 2A and 7A and 1 QTL for grain Zn on chromosome 7A. The grain Fe QTL were mapped in marker interval Xwmc382-Xbarc124 and Xgwm473-Xbarc29, respectively, each explaining 12.6% and 11.7% of the total phenotypic variation and were designated as QFe.pau-2A and QFe.pau-7A. The QTL for grain Zn, which mapped in marker interval Xcfd31-Xcfa2049, was designated as QZn.pau-7A and explained 18.8% of the total phenotypic variatio

    Identification of a novel stripe rust resistance gene from the European winter wheat cultivar 'Acienda':A step towards rust proofing wheat cultivation

    Get PDF
    All stage resistance to stripe rust races prevalent in India was investigated in the European winter wheat cultivar ‘Acienda’. In order to dissect the genetic basis of the resistance, a backcross population was developed between ‘Acienda’ and the stripe rust susceptible Indian spring wheat cultivar ‘HD 2967’. Inheritance studies revealed segregation for a dominant resistant gene. High density SNP genotyping was used to map stripe rust resistance and marker regression analysis located stripe rust resistance to the distal end of wheat chromosome 1A. Interval mapping located this region between the SNP markers AX-95162217 and AX-94540853, at a LOD score of 15.83 with a phenotypic contribution of 60%. This major stripe rust resistance locus from ‘Acienda’ has been temporarily designated as Yraci. A candidate gene search in the 2.76 Mb region carrying Yraci on chromosome 1A identified 18 NBS-LRR genes based on wheat RefSeqv1.0 annotations. Our results indicate that as there is no major gene reported in the Yraci chromosome region, it is likely to be a novel stripe rust resistance locus and offers potential for deployment, using the identified markers, to confer all stage stripe rust resistance

    Variable Immunogenic Potential of Wheat: Prospective for Selection of Innocuous Varieties for Celiac Disease Patients via in vitro Approach

    Get PDF
    Celiac Disease (CD) is a multifactorial, autoimmune enteropathy activated by cereal proteins in genetically predisposed individuals carrying HLA DQ2/8 genes. A heterogenous gene combination of the cereal prolamins is documented in different wheat genotypes, which is suggestive of their variable immunogenic potential. In the current study, four wheat varieties (C591, C273, 9D, and K78) identified via in silico analysis were analyzed for immunogenicity by measuring T-cell proliferation rate and levels of inflammatory cytokines (Interferon-γ and Tumor Necrosis Factor-α). Peripheral Blood Mononuclear Cells and biopsy derived T-cell lines isolated from four CD patients in complete remission and two controls were stimulated and cultured in the presence of tissue transglutaminase activated pepsin-trypsin (PT) digest of total gliadin extract from test varieties. The immunogenicity was compared with PBW 621, one of the widely cultivated wheat varieties. Phytohaemagglutinin-p was taken as positive control, along with unstimulated cells as negative control. Rate of cell proliferation (0.318, 0.482; 0.369, 0.337), concentration of IFN- γ (107.4, 99.2; 117.9, 99.7 pg/ml), and TNF- α (453.8, 514.2; 463.8, 514.2 pg/ml) was minimum in cultures supplemented with wheat antigen from C273, when compared with other test varieties and unstimulated cells. Significant difference in toxicity levels among different wheat genotypes to stimulate celiac mucosal T-cells and PBMC's was observed; where C273 manifested least immunogenic response amongst the test varieties analyzed

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    Mechanism of leaf rust resistance in wheat wild relatives, Triticum monococcum L. and T. boeoticum L

    Full text link
    Triticum monococcum L. and T. boeoticum L., diploid wild relatives of bread wheat (T. aestivum L.), possess resistance to leaf rust (also known as brown rust) caused by Puccinia triticina Eriks. Haustorium formation-based resistance mechanisms (i.e. pre-haustorial and post-haustorial resistance) to leaf rust have been studied and reported in various T. monococcum accessions. In the present study, the mechanism of leaf rust resistance in T. monococcum and T. boeoticum accessions was studied using confocal laser scanning microscopy. Components of resistance studied at a histological level against leaf rust pathotypes, a Mexican pathotype (TCB/TD) and a Swiss pathotype (97512-19), indicated different types of resistance mechanism operative in the two accessions. The resistance in T. monococcum ranged from pre-haustorial resistance against 97512-19 to post-haustorial resistance against TCB/TD. The response in T. boeoticum was post-haustorial with necrosis against the two pathotypes. Pre-haustorial resistance observed in T. monococcum could serve as a potential source of durable rust resistance in wheat breeding

    High-resolution genetic mapping of QTL governing resistance to corn leaf aphid, Rhopalosiphum maidis (Fitch) in barley

    No full text
    A mapping population, recombinant inbred lines (RILs), was developed from the cross of aphid susceptible cv. PL426 and resistant genotype BK 9816 to identify genetic loci conferring corn leaf aphid (CLA) Rhopalosiphum maidis (Fitch) resistance in barley. RILs showed wide range of aphid infestation (2.2–65.0 aphids/tiller) indicating quantitative inheritance of aphid resistance. All the traits related to aphid resistance, viz. aphid fecundity, chlorophyll content and tiller dry weight of plants, also showed quantitative variation. RILs were further genotyped by sequencing to identify SNPs covering whole barley genome. A total of 605 high-quality bin-mapped SNPs were positioned in seven linkage groups with a total map length of 1208.9 cM and average marker distance of 2.02 cM. Composite interval mapping identified five different quantitative trait loci (QTLs) on chromosomes 1H, 3H, 5H and 6H associated with aphid resistance and related traits. Two QTLs on chromosome 6H, QCLA.pau-6H.1 and QCLA.pau-6H.2, were mapped at genetic intervals of 1.7 cM and 4.9 cM, respectively. QCLA.pau-6H.1 explained 9.76 percent of phenotypic variation for aphid count and 12.78 percent for aphid score. Similarly, QCLA.pau-6H.2 explained 10.96 percent of phenotypic variation for aphid score. The QTL for chlorophyll content and tiller dry weight spanned the same region of QCLA.pau-6H.2, explained 13.08 and 13.20 percent phenotypic variation, respectively. Another QTL associated with chlorophyll content was mapped on chromosome 3H at 3.6-cM interval explained 12.90 percent phenotypic variation. In addition, QTL regions were also identified for aphid resistance and related traits on chromosome 1H and 5H
    corecore