949 research outputs found
Contribution à l’étude des leptospiroses bovines inapparentes en charollais
Chevrier L., Gaumont R. Contribution à l’étude des leptospiroses bovines inapparentes en Charollais. In: Bulletin de l'Académie Vétérinaire de France tome 127 n°4, 1974. pp. 213-219
Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles
In this paper is reported a study on the behaviour of ES mild steel sheets subjected to perforation by hemispherical projectiles. Experiments have been conducted using a pneumatic cannon within the range of impact velocities 5m/s<=V0<=60m/s. The experimental setup allowed evaluating initial velocity, failure mode and post-mortem deflection of the plates. The tests have been recorded using high speed infrared camera. It made possible to obtain temperature contours of the specimen during impact. Thus, special attention is focussed on the thermal softening of the material which is responsible for instabilities and failure. Assuming adiabatic conditions of deformation, the increase of temperature may be related to the plastic deformation. The critical strain leading to target-failure is evaluated coupling temperature measurements with numerical simulations and with analytical predictions obtained by means of the Rusinek-Klepaczko constitutive relation [Rusinek, A., Klepaczko, J.R. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress. Int J Plasticity. 2001; 17, 87-115]. It has been estimated that the process of localization of plastic deformation which leads to target-failure involves local values close to for the boundary value problem approached. Subsequently, this failure strain level has been applied to simulate the perforation process and the numerical results obtained show satisfactory agreement with the experiments in terms of ballistic limit, temperature increase and failure mode of the target.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG08 UC3M/MAT 4464) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408)Publicad
Pathways into services for offenders with intellectual disabilities : childhood experience, diagnostic information and offence variables
The patterns and pathways into intellectual disability (ID) offender services were studied through case file review for 477 participants referred in one calendar year to community generic, community forensic, and low, medium, and maximum secure services. Data were gathered on referral source, demographic information, index behavior, prior problem behaviors, diagnostic information, and abuse or deprivation. Community referrers tended to refer to community services and secure service referrers to secure services. Physical and verbal violence were the most frequent index behaviors, whereas contact sexual offenses were more prominent in maximum security. Age at first incident varied with security, with the youngest in maximum secure services. Attention-deficit/hyperactivity disorder or conduct disorder was the most frequently recorded diagnosis, and severe deprivation was the most frequent adverse developmental experience. Fire starting, theft, and road traffic offenses did not feature prominently. Generic community services accepted a number of referrals with forensic-type behavior and had higher proportions of both women and people with moderate or severe ID
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Imaging and controlling electron transport inside a quantum ring
Traditionally, the understanding of quantum transport, coherent and
ballistic1, relies on the measurement of macroscopic properties such as the
conductance. While powerful when coupled to statistical theories, this approach
cannot provide a detailed image of "how electrons behave down there". Ideally,
understanding transport at the nanoscale would require tracking each electron
inside the nano-device. Significant progress towards this goal was obtained by
combining Scanning Probe Microscopy (SPM) with transport measurements2-7. Some
studies even showed signatures of quantum transport in the surrounding of
nanostructures4-6. Here, SPM is used to probe electron propagation inside an
open quantum ring exhibiting the archetype of electron wave interference
phenomena: the Aharonov-Bohm effect8. Conductance maps recorded while scanning
the biased tip of a cryogenic atomic force microscope above the quantum ring
show that the propagation of electrons, both coherent and ballistic, can be
investigated in situ, and even be controlled by tuning the tip potential.Comment: 11 text pages + 3 figure
Ocean 2D eddy energy fluxes from small mesoscale processes with SWOT
We investigate ocean dynamics at different scales in the Agulhas Current system, a region of important interocean exchange of heat and energy. While ocean observations and some of the most advanced climate models capture the larger mesoscale dynamics (> 100 km), the smaller-scale fronts and eddies are underrepresented. The recently launched NASA–CNES Surface Water and Ocean Topography (SWOT) wide-swath altimeter mission observes the smaller ocean geostrophic scales down to 15 km in wavelength globally. Here we will analyse different eddy diagnostics in the Agulhas Current region and quantify the contributions from the larger mesoscales observable today and the smaller scales to be observed with SWOT. Surface geostrophic diagnostics of eddy kinetic energy, strain, and energy cascades are estimated from modelled sea surface height (SSH) fields of the Massachusetts Institute of Technology general circulation model (MITgcm) latitude–longitude polar cap (LLC4320) simulation subsampled at 1/10∘. In this region, the smaller scales (<150 km) have a strong signature on the horizontal geostrophic strain rate and for all eddy diagnostics in the Western Boundary Current and along the meandering Agulhas Extension. We investigate the horizontal cascade of energy using a coarse-graining technique, and we observe that the wavelength range where the inverse cascade occurs is biased towards larger mesoscale wavelengths with today’s altimetric sampling. We also calculate the projected sampling of the eddy diagnostics under the SWOT swaths built with the NASA–CNES simulator to include the satellite position and realistic noise. For the swaths, a neural network noise mitigation method is implemented to reduce the residual SWOT random error before calculating eddy diagnostics. In terms of SSH, observable wavelengths of 15 to 20 km are retrieved after neural network noise mitigation, as opposed to wavelengths larger than 40 km before the noise reduction.</p
Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment
The low-temperature behavior of the Casimir-Polder free energy and entropy
for an atom near a dielectric plate are found on the basis of the Lifshitz
theory. The obtained results are shown to be thermodynamically consistent if
the dc conductivity of the plate material is disregarded. With inclusion of dc
conductivity, both the standard Lifshitz theory (for all dielectrics) and its
generalization taking into account screening effects (for a wide range of
dielectrics) violate the Nernst heat theorem. The inclusion of the screening
effects is also shown to be inconsistent with experimental data of Casimir
force measurements. The physical reasons for this inconsistency are elucidated.Comment: 10 pages, 1 figure; improved discussion; to appear in J. Phys. A:
Math. Theor. (Fast Track Communications
- …