7 research outputs found

    Comportement de l’uranium et de ses simulants dans les verres d’aluminosilicates en contact avec des mĂ©taux fondus

    No full text
    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na2O-CaO-SiO2-Al2O3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (HfIV) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO2 for an oxygen fugacity below 10-14 atm at 1250°C-1400°C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that UIV is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re-oxidation process must be corroborated. Finally, the formation and dissolution processes of the different crystalline phases observed during these glass-metal interactions have been studied using a thermodynamic approach based on phase diagramsCe travail s’inscrit dans le cadre du dĂ©veloppement d’un procĂ©dĂ© innovant de conditionnement de dĂ©chets nuclĂ©aires contenant des mĂ©taux contaminĂ©s en actinides. Le principe de ce procĂ©dĂ© consiste Ă  incorporer des concentrations Ă©levĂ©es en actinides dans un bain de verre au contact de mĂ©taux fondus. Parmi eux, l’aluminium et/ou l’acier inoxydable imposent un environnement trĂšs rĂ©ducteur et induisent des phĂ©nomĂšnes d’oxydorĂ©duction au sein du verre. Ces phĂ©nomĂšnes provoquent un changement du degrĂ© d’oxydation des actinides qui modifie leur solubilitĂ© dans le verre et peut potentiellement entraĂźner leur rĂ©duction Ă  l’état mĂ©tallique. Afin de mieux comprendre les processus mis en jeu, cette Ă©tude va s’intĂ©resser au comportement de l’uranium et de ses simulants Ă  savoir l’hafnium et le nĂ©odyme, dans des verres aluminosilicatĂ©s du systĂšme Na2O-CaO-SiO2-Al2O3 et Ă©laborĂ©s en conditions trĂšs rĂ©ductrices. La premiĂšre partie de ce manuscrit est consacrĂ©e Ă  l’étude comparative des solubilitĂ©s de l’uranium et de l’hafnium dans le verre en fonction des conditions redox et de la composition du verre. Pour cela, une mĂ©thodologie a Ă©tĂ© mise en place et un montage spĂ©cifique a Ă©tĂ© utilisĂ© afin d’imposer la fugacitĂ© en oxygĂšne et de contrĂŽler la teneur en alcalins du verre. Les rĂ©sultats indiquent que la solubilitĂ© de l’uranium dans le verre est trĂšs infĂ©rieure Ă  celle de l’hafnium (HfIV) dans des conditions rĂ©ductrices. Pour des fugacitĂ©s en oxygĂšne infĂ©rieures Ă  10-14 atm, la solubilitĂ© de l’uranium est comprise entre 4 et 7 % massiques d’UO2 dans la gamme de tempĂ©ratures de 1250°C-1400°C. L’étude de la spĂ©ciation de l’uranium par spectroscopie d’absorption des rayons X (XANES) montre que l’uranium est majoritairement prĂ©sent sous la forme UIV dans le verre pour de telles fugacitĂ©s en oxygĂšne imposĂ©es. Dans la seconde partie de ce travail, les mĂ©canismes d’interactions verre-mĂ©tal ont Ă©tĂ© identifiĂ©s afin de localiser l’uranium ainsi que ses simulants (nĂ©odyme et hafnium) dans le systĂšme verre-mĂ©tal. Ces mĂ©canismes sont principalement gouvernĂ©s par la prĂ©sence d’aluminium mĂ©tal et sont similaires pour l’uranium et ses simulants. Dans des conditions particuliĂšres, le suivi cinĂ©tique des expĂ©riences met en Ă©vidence la prĂ©sence transitoire de l’uranium et de ses simulants Ă  l’état mĂ©tallique dans des alliages ou des composĂ©s dĂ©finis. Au cours du temps, une rĂ©-oxydation de ces Ă©lĂ©ments mĂ©talliques a lieu en accord avec les donnĂ©es thermodynamiques. Dans le cas de l’uranium, le processus de rĂ©-oxydation reste Ă  confirmer. Enfin, une approche thermodynamique Ă  l’aide des diagrammes de phases a permis d’expliquer la formation et la dissolution des diffĂ©rentes phases cristallines prĂ©sentes au sein du verre lors des interactions verre-mĂ©ta

    Behavior of uranium and its surrogates in molten aluminosilicate glasses in contact with liquid metals

    No full text
    Ce travail s’inscrit dans le cadre du dĂ©veloppement d’un procĂ©dĂ© innovant de conditionnement de dĂ©chets nuclĂ©aires contenant des mĂ©taux contaminĂ©s en actinides. Le principe de ce procĂ©dĂ© consiste Ă  incorporer des concentrations Ă©levĂ©es en actinides dans un bain de verre au contact de mĂ©taux fondus. Parmi eux, l’aluminium et/ou l’acier inoxydable imposent un environnement trĂšs rĂ©ducteur et induisent des phĂ©nomĂšnes d’oxydorĂ©duction au sein du verre. Ces phĂ©nomĂšnes provoquent un changement du degrĂ© d’oxydation des actinides qui modifie leur solubilitĂ© dans le verre et peut potentiellement entraĂźner leur rĂ©duction Ă  l’état mĂ©tallique. Afin de mieux comprendre les processus mis en jeu, cette Ă©tude va s’intĂ©resser au comportement de l’uranium et de ses simulants Ă  savoir l’hafnium et le nĂ©odyme, dans des verres aluminosilicatĂ©s du systĂšme Na2O-CaO-SiO2-Al2O3 et Ă©laborĂ©s en conditions trĂšs rĂ©ductrices. La premiĂšre partie de ce manuscrit est consacrĂ©e Ă  l’étude comparative des solubilitĂ©s de l’uranium et de l’hafnium dans le verre en fonction des conditions redox et de la composition du verre. Pour cela, une mĂ©thodologie a Ă©tĂ© mise en place et un montage spĂ©cifique a Ă©tĂ© utilisĂ© afin d’imposer la fugacitĂ© en oxygĂšne et de contrĂŽler la teneur en alcalins du verre. Les rĂ©sultats indiquent que la solubilitĂ© de l’uranium dans le verre est trĂšs infĂ©rieure Ă  celle de l’hafnium (HfIV) dans des conditions rĂ©ductrices. Pour des fugacitĂ©s en oxygĂšne infĂ©rieures Ă  10-14 atm, la solubilitĂ© de l’uranium est comprise entre 4 et 7 % massiques d’UO2 dans la gamme de tempĂ©ratures de 1250°C-1400°C. L’étude de la spĂ©ciation de l’uranium par spectroscopie d’absorption des rayons X (XANES) montre que l’uranium est majoritairement prĂ©sent sous la forme UIV dans le verre pour de telles fugacitĂ©s en oxygĂšne imposĂ©es. Dans la seconde partie de ce travail, les mĂ©canismes d’interactions verre-mĂ©tal ont Ă©tĂ© identifiĂ©s afin de localiser l’uranium ainsi que ses simulants (nĂ©odyme et hafnium) dans le systĂšme verre-mĂ©tal. Ces mĂ©canismes sont principalement gouvernĂ©s par la prĂ©sence d’aluminium mĂ©tal et sont similaires pour l’uranium et ses simulants. Dans des conditions particuliĂšres, le suivi cinĂ©tique des expĂ©riences met en Ă©vidence la prĂ©sence transitoire de l’uranium et de ses simulants Ă  l’état mĂ©tallique dans des alliages ou des composĂ©s dĂ©finis. Au cours du temps, une rĂ©-oxydation de ces Ă©lĂ©ments mĂ©talliques a lieu en accord avec les donnĂ©es thermodynamiques. Dans le cas de l’uranium, le processus de rĂ©-oxydation reste Ă  confirmer. Enfin, une approche thermodynamique Ă  l’aide des diagrammes de phases a permis d’expliquer la formation et la dissolution des diffĂ©rentes phases cristallines prĂ©sentes au sein du verre lors des interactions verre-mĂ©talThis study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na2O-CaO-SiO2-Al2O3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (HfIV) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO2 for an oxygen fugacity below 10-14 atm at 1250°C-1400°C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that UIV is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re-oxidation process must be corroborated. Finally, the formation and dissolution processes of the different crystalline phases observed during these glass-metal interactions have been studied using a thermodynamic approach based on phase diagram

    Crystal structure of Na2HfSi2O7 by Rietveld refinement

    Get PDF
    The structure of triclinic disodium hafnium disilicate, Na2HfSi2O7, has been determined by laboratory powder X-ray diffraction and refined by the Rietveld refinement. The structure is a framework made of alternate layers of HfO6 octahedra and SiO4 tetrahedra linked by common O atoms. Sodium atoms are located in the voids of the framework, aligned into tunnels along the [010] direction. Na2HfSi2O7 is isostructural with the parakeldyshite Na2ZrSi2O7 phase

    Characterization of the Alkoxide-based Sol-gel Derived La9.33Si6O26 Powder and Ceramic

    No full text
    In this study, we report on the acid-catalysed synthesis of La9.33Si6O26 from lanthanum nitrate or acetate and silicon ethoxide (TEOS) in the ethanol solvent, upon the transition from liquid to amorphous and crystalline phases. The similarity of the Fourier transform infrared spectra of the lanthanum-salt solutions and lanthanum-silicon sols indicates that the lanthanum environment is not changed in the reaction of the La-salt with TEOS. In the nitric-acid catalysed synthesis, the hydrolysis reaction was almost instantaneous, as a consequence of a higher amount of water in this system, which contributed to a high level of chemical heterogeneity in the product. The acetic acid-based synthesis ensured a good mixing of the reagents at the nanometre level, which gave rise to the formation of the pure La9.33Si6O26 powder upon heating at 900 degrees C, and single phase ceramics with 94 % relative density after sintering at 1400 degrees C for 3 h in air, which is 200 degrees C lower temperature then usually reported for the apatite material

    Hafnium solubility determination in soda-lime aluminosilicate glass

    No full text
    International audienceThe solubility of hafnium dioxide (HfO 2), used as an uranium surrogate, is measured in glass melts belonging to the CaO-Al 2 O 3-SiO 2 and Na 2 O-CaO-Al 2 O 3-SiO 2 systems, under oxidizing and reducing conditions. Two methods have been carried out to determine it and the kinetic factors controlling the HfO 2 dissolution in glass melt have been investigated in order to approach equilibrium. The solubility ranges from 3 to 6.5 mol% HfO 2 in aluminosilicate glasses at temperature between 1250°C and 1400°C, and is not affected by the redox conditions. Conversely, the solubility is modified by the melting temperature and the glass composition. The excess of alkalies or alkaline earths which are not involved in the charge balance of AlO 4 tetrahedrons in the silica network appears to play a significant role. Glass homogeneity is checked by scanning electron microscopy and X-ray diffraction. O 7 are metastable crystals observed in the glass melts. The stability of those crystalline phases mainly depends on the glass composition

    Uranium solubility and speciation in reductive soda-lime aluminosilicate glass melts

    No full text
    International audienceUranium solubility in aluminosilicate melts of the Na2_2O-CaO-Al2_2O3_3 -SiO2_2 system with two different Na/Ca ratios was studied at temperatures of 1250–1400 °C and under various redox conditions. A closed thermochemical reactor was used to control the alkali metal activity (sodium oxide content) and the oxygen fugacity imposing the reducing environment on the glass melt (10−5^{−5} atm < fO2_2 < 10−15^{−15} atm). The compositions of the quenched glasses were analyzed by scanning electron microscopy and electron probe microanalysis. It appeared that uranium solubility decreased with decreasing oxygen fugacity, elucidating the roles of the different valences of uranium. To account for the respective effects of theses valences, we proposed a method to determine the proportion of each uranium oxidation state in the glass sample. The coexisting UVI^{VI}, U V^V, and UIV^{IV} species have been characterized for the first time in glass samples using U M4_4 edge high energy resolution X-ray absorption near-edge structure. Results showed that the lowest solubility values, of approximately 1 mol% UO2_2 , were obtained under strongly reducing conditions, and thus with UIV^{IV} as the main valence. Under higher oxygen fugacity, uranium solubility was controlled and drastically enhanced by the UVI^{VI} concentration in the melt

    The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly

    No full text
    International audienceIn metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins
    corecore