316 research outputs found

    Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence

    Get PDF
    The universality of intermittency in hydrodynamic turbulence is considered based on a recent model for the velocity gradient tensor evolution. Three possible versions of the model are investigated differing in the assumed correlation time-scale and forcing strength. Numerical tests show that the same (universal) anomalous relative scaling exponents are obtained for the three model variants. It is also found that transverse velocity gradients are more intermittent than longitudinal ones, whereas dissipation and enstrophy scale with the same exponents. The results are consistent with the universality of intermittency and relative scaling exponents, and suggest that these are dictated by the self-stretching terms that are the same in each variant of the model

    Matrix exponential-based closures for the turbulent subgrid-scale stress tensor

    Get PDF
    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy

    Lagrangian dynamics and statistical geometric structure of turbulence

    Full text link
    The local statistical and geometric structure of three-dimensional turbulent flow can be described by properties of the velocity gradient tensor. A stochastic model is developed for the Lagrangian time evolution of this tensor, in which the exact nonlinear self-stretching term accounts for the development of well-known non-Gaussian statistics and geometric alignment trends. The non-local pressure and viscous effects are accounted for by a closure that models the material deformation history of fluid elements. The resulting stochastic system reproduces many statistical and geometric trends observed in numerical and experimental 3D turbulent flows, including anomalous relative scaling.Comment: 5 pages, 5 figures, final version, publishe

    Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment

    Get PDF
    We report measurements of the dissipation in the Superfluid Helium high REynold number von Karman flow (SHREK) experiment for different forcing conditions, through a regime of global hysteretic bifurcation. Our macroscopical measurements indicate no noticeable difference between the classical fluid and the superfluid regimes, thereby providing evidence of the same dissipative anomaly and response to asymmetry in fluid and superfluid regime. %In the latter case, A detailed study of the variations of the hysteretic cycle with Reynolds number supports the idea that (i) the stability of the bifurcated states of classical turbulence in this closed flow is partly governed by the dissipative scales and (ii) the normal and the superfluid component at these temperatures (1.6K) are locked down to the dissipative length scale.Comment: 5 pages, 5 figure

    On the origin of intermittency in wave turbulence

    Get PDF
    Using standard signal processing tools, we experimentally report that intermittency of wave turbulence on the surface of a fluid occurs even when two typical large-scale coherent structures (gravity wave breakings and bursts of capillary waves on steep gravity waves) are not taken into account. We also show that intermittency depends on the power injected into the waves. The dependence of the power-law exponent of the gravity-wave spectrum on the forcing amplitude cannot be also ascribed to these coherent structures. Statistics of these both events are studied.Comment: To be published in EP

    Fully developed turbulence and the multifractal conjecture

    Full text link
    We review the Parisi-Frisch MultiFractal formalism for Navier--Stokes turbulence with particular emphasis on the issue of statistical fluctuations of the dissipative scale. We do it for both Eulerian and Lagrangian Turbulence. We also show new results concerning the application of the formalism to the case of Shell Models for turbulence. The latter case will allow us to discuss the issue of Reynolds number dependence and the role played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure

    Links between dissipation, intermittency, and helicity in the GOY model revisited

    Full text link
    High-resolution simulations within the GOY shell model are used to study various scaling relations for turbulence. A power-law relation between the second-order intermittency correction and the crossover from the inertial to the dissipation range is confirmed. Evidence is found for the intermediate viscous dissipation range proposed by Frisch and Vergassola. It is emphasized that insufficient dissipation-range resolution systematically drives the energy spectrum towards statistical-mechanical equipartition. In fully resolved simulations the inertial-range scaling exponents depend on both model parameters; in particular, there is no evidence that the conservation of a helicity-like quantity leads to universal exponents.Comment: 24 pages, 13 figures; submitted to Physica

    Modeling the pressure Hessian and viscous Laplacian in Turbulence: comparisons with DNS and implications on velocity gradient dynamics

    Get PDF
    Modeling the velocity gradient tensor A along Lagrangian trajectories in turbulent flow requires closures for the pressure Hessian and viscous Laplacian of A. Based on an Eulerian-Lagrangian change of variables and the so-called Recent Fluid Deformation closure, such models were proposed recently. The resulting stochastic model was shown to reproduce many geometric and anomalous scaling properties of turbulence. In this work, direct comparisons between model predictions and Direct Numerical Simulation (DNS) data are presented. First, statistical properties of A are described using conditional averages of strain skewness, enstrophy production, energy transfer and vorticity alignments, conditioned upon invariants of A. These conditionally averaged quantities are found to be described accurately by the stochastic model. More detailed comparisons that focus directly on the terms being modeled in the closures are also presented. Specifically, conditional statistics associated with the pressure Hessian and the viscous Laplacian are measured from the model and are compared with DNS. Good agreement is found in strain-dominated regions. However, some features of the pressure Hessian linked to rotation dominated regions are not reproduced accurately by the model. Geometric properties such as vorticity alignment with respect to principal axes of the pressure Hessian are mostly predicted well. In particular, the model predicts that an eigenvector of the rate-of-strain will be also an eigenvector of the pressure Hessian, in accord to basic properties of the Euler equations. The analysis identifies under what conditions the Eulerian-Lagrangian change of variables with the Recent Fluid Deformation closure works well, and in which flow regimes it requires further improvements.Comment: 16 pages, 10 figures, minor revisions, final version published in Phys. Fluid
    • …
    corecore