267 research outputs found
Modeling the molecular gas content and CO-to-H2 conversion factors in low-metallicity star-forming dwarf galaxies
Context. Low-metallicity dwarf galaxies often show no or little CO emission, despite the intense star formation observed in local samples. Both simulations and resolved observations indicate that molecular gas in low-metallicity galaxies may reside in small dense clumps, surrounded by a substantial amount of more diffuse gas that is not traced by CO. Constraining the relative importance of CO-bright versus CO-dark H2 star-forming reservoirs is crucial to understanding how star formation proceeds at low metallicity.
//
Aims. We test classically used single component radiative transfer models and compare their results to those obtained on the assumption of an increasingly complex structure of the interstellar gas, mimicking an inhomogeneous distribution of clouds with various physical properties.
//
Methods. Using the Bayesian code MULTIGRIS, we computed representative models of the interstellar medium as combinations of several gas components, each with a specific set of physical parameters. We introduced physically motivated models assuming power-law distributions for the density, ionization parameter, and the depth of molecular clouds.
//
Results. This new modeling framework allows for the simultaneous reproduction of the spectral constraints from the ionized gas, neutral atomic gas, and molecular gas in 18 galaxies from the Dwarf Galaxy Survey. We confirm the presence of a predominantly CO-dark molecular reservoir in low-metallicity galaxies. The predicted total H2 mass is best traced by [CâŻII]158 ÎŒm and, to a lesser extent, by [CâŻI] 609 ÎŒm, rather than by CO(1â0). We examine the CO-to-H2 conversion factor (αCO) versus metallicity relation and find that its dispersion increases significantly when different geometries of the gas are considered. We define a âclumpinessâ parameter that is anti-correlated with [CâŻII]/CO and explains the dispersion of the αCO versus metallicity relation. We find that low-metallicity galaxies with high clumpiness parameters may have αCO values as low as the Galactic value, even at low metallicity.
//
Conclusions. We identify the clumpiness of molecular gas as a key parameter for understanding variations of geometry-sensitive quantities, such as αCO. This new modeling framework enables the derivation of constraints on the internal cloud distribution of unresolved galaxies, based solely on their integrated spectra
Clocking the Lyme Spirochete
In order to clear the body of infecting spirochetes, phagocytic cells must be able to get hold of them. In real-time phase-contrast videomicroscopy we were able to measure the speed of Borrelia burgdorferi (Bb), the Lyme spirochete, moving back and forth across a platelet to which it was tethered. Its mean crossing speed was 1,636 ”m/min (Nâ=â28), maximum, 2800 ”m/min (Nâ=â3). This is the fastest speed recorded for a spirochete, and upward of two orders of magnitude above the speed of a human neutrophil, the fastest cell in the body. This alacrity and its interpretation, in an organism with bidirectional motor capacity, may well contribute to difficulties in spirochete clearance by the host
Deep transfer learning for star cluster classification: I. application to the PHANGSâHST survey
We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies (â DâČ20Mpcâ ) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)âHST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGSâHST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70âperâcent, 40âperâcent, 40â50âperâcent, and 50â70âperâcent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70â80âperâcent, 40â50âperâcent, 40â50âperâcent, and 60â70âperâcent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study
The Herschel Dwarf Galaxy Survey: I. Properties of the low-metallicity ISM from PACS spectroscopy
International audienceContext. The far-infrared (FIR) lines are important tracers of the cooling and physical conditions of the interstellar medium (ISM) and are rapidly becoming workhorse diagnostics for galaxies throughout the universe. There are clear indications of a different behavior of these lines at low metallicity that needs to be explored. Aims. Our goal is to explain the main differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies, and how this translates in ISM properties. Methods. We present Herschel/PACS spectroscopic observations of the [Câii] 157 ÎŒm, [Oâi] 63 and 145 ÎŒm, [Oâiii] 88 ÎŒm, [Nâii] 122 and 205 ÎŒm, and [Nâiii] 57 ÎŒm fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. Results. We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of [Oâiii]88/[Nâii]122 and [Nâiii]57/[Nâii]122 are high, indicative of hard radiation fields. In the photodissociation region (PDR), the [Câii]157/[Oâi]63 ratio is slightly higher than in metal-rich galaxies, with a small increase with metallicity, and the [Oâi]145/[Oâi]63 ratio is generally lower than 0.1, demonstrating that optical depth effects should be small on the scales probed. The [Oâiii]88/[Oâi]63 ratio can be used as an indicator of the ionized gas/PDR filling factor, and is found to be ~4 times higher in the dwarfs than in metal-rich galaxies. The high [Câii]/LTIR, [Oâi]/LTIR, and [Oâiii]/LTIR ratios, which decrease with increasing LTIR and LTIR/LB, are interpreted as a combination of moderate far-UV fields and a low PDR covering factor. Harboring compact phases of a low filling factor and a large volume filling factor of diffuse gas, the ISM of low-metallicity dwarf galaxies has a more porous structure than that of metal-rich galaxies
Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis
International audienceThe application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al 0) and aluminum oxide (Al 2 O 3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO 2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques
The Physical Drivers and Observational Tracers of CO-to-H2 Conversion Factor Variations in Nearby Barred Galaxy Centers
The CO-to-H-2 conversion factor (alpha CO) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower alpha CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner similar to 2 kpc of NGC 3627 and NGC 4321 tracing (CO)-C-12, (CO)-C-13, and (CO)-O-18 lines on similar to 100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of aCO. The central 300 pc nuclei in both galaxies show strong enhancement of temperature Tk greater than or similar to 100 K and density n(H2) > 10(3) cm(-3). Assuming a CO-to-H-2 abundance of 3 x 10(-4), we derive 4-15 times lower alpha(CO) than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of alpha(CO) with low-J (CO)-C-12 optical depths (tau(CO)), as well as an anticorrelation with Tk. The tCO correlation explains most of the aCO variation in the three galaxy centers, whereas changes in T-k influence alpha(CO) to second order. Overall, the observed line width and (CO)-C-12/(CO)-C-13 2-1 line ratio correlate with tCO variation in these centers, and thus they are useful observational indicators for alpha(CO) variation. We also test current simulation-based alpha(CO) prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations
- âŠ